Abstract
In this paper we present a study of the overlapping clustering algorithms OKM, WOKM and OKMED, which are extensions to the overlapping case of the well known Kmeans algorithm proposed for building partitions. Different to other previously reported comparisons, in our study we compare these algorithms using the external evaluation metric FBcubed which takes into account the overlapping among clusters and we contrast our results against those obtained by F-measure, a metric that does not take into account the overlapping among clusters and that has been previously used in another reported comparison.
Chapter PDF
Similar content being viewed by others
References
Aslam, J., Pelekhov, E., Rus, D.: The star clustering algorithm for static and dynamic information organization. Journal of Graph Algorithms and Applications 8(1), 95–129 (2004)
Davis, G., Carley, K.: Clearing the FOG: Fuzzy, overlapping groups for social networks. Social Networks 30(3), 201–212 (2008)
Abella-Pérez, R., Medina-Pagola, J.E.: An incremental text segmentation by clustering cohesion. In: Proceedings of HaCDAIS 2010, pp. 65–72 (2010)
Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavorí, R., Santiesteban-Alganza, Y.: Un algoritmo incremental para la obtención de cubrimientos con datos mezclados. In: Proceedings of CIARP 2002, pp. 405–416 (2002)
Zamir, O., Etziony, O.: Web document clustering: A feasibility demonstration. In: Proceedings of the 21st Annual International ACM SIGIR Conference, pp. 46–54 (1998)
Aslam, J., Pelekhov, E., Rus, D.: Static and dynamic information organization with star clusters. In: Proceedings of the Seventh International Conference on Information and Knowledge Management, pp. 208–217 (1998)
Gil-García, R.J., Badía-Contelles, J.M., Pons-Porrata, A.: Extended star clustering algorithm. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 480–487. Springer, Heidelberg (2003)
Cleuziou, G.: An Extended Version of the k-Means Method for Overlapping Clustering. In: 19th ICPR Conference, Tampa, Florida, USA, pp. 1–4 (2008)
Cleuziou, G.: Two Variants of the OKM for Overlapping Clustering. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 149–166. Springer, Heidelberg (2010)
Gil-García, R.J., Badía-Contelles, J.M., Pons-Porrata, A.: Parallel algorithm for extended star clustering. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 402–409. Springer, Heidelberg (2004)
Suárez, A.P., Pagola, J.E.M.: A clustering algorithm based on generalized stars. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 248–262. Springer, Heidelberg (2007)
MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)
Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition 37(5), 943–952 (2004)
Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis based on the L1 Norm, pp. 405–416 (1987)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Information Retrieval, 461–486 (2009)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel Classification of Music into Emotions. In: Proc. 2008 International Conference on Music Information Retrieval (ISMIR 2008), pp. 325–330 (2008)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classiffication. Pattern Recognition 37(9), 1757–1771 (2004)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Aroche-Villarruel, A.A., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A., Pérez-Suárez, A. (2014). Study of Overlapping Clustering Algorithms Based on Kmeans through FBcubed Metric. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-Lopez, J.A., Salas-Rodríguez, J., Suen, C.Y. (eds) Pattern Recognition. MCPR 2014. Lecture Notes in Computer Science, vol 8495. Springer, Cham. https://doi.org/10.1007/978-3-319-07491-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-07491-7_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07490-0
Online ISBN: 978-3-319-07491-7
eBook Packages: Computer ScienceComputer Science (R0)