Abstract
In this paper we study a generalization of the classical feasibility problem in integer linear programming, where an ILP needs to have a prescribed number of solutions to be considered solved.
We first provide a generalization of the famous Doignon-Bell-Scarf theorem: Given an integer k, we prove that there exists a constant c(k,n), depending only on the dimension n and k, such that if a polyhedron {x : Ax ≤ b} contains exactly k integer solutions, then there exists a subset of the rows of cardinality no more than c(k,n), defining a polyhedron that contains exactly the same k integer solutions.
The second contribution of the article presents a structure theory that characterizes precisely the set sg ≥ k (A) of all vectors b such that the problem Ax = b, x ≥ 0, x ∈ ℤn, has at least k-solutions. We demonstrate that this set is finitely generated, a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computation. Similar results can be derived for those right-hand-side vectors that have exactly k solutions or fewer than k solutions.
Finally we show that, when n, k are fixed natural numbers, one can compute in polynomial time an encoding of sg ≥ k (A) as a generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors that have exactly k solutions (similarly for at least k or less than k solutions). Under the same assumptions we prove that the k-Frobenius number can be computed in polynomial time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
4ti2 team. 4ti2–Software package for algebraic, geometric and combinatorial problems on linear spaces, http://www.4ti2.de/
Aardal, K., Lenstra, A.K.: Hard equality constrained integer knapsacks. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 350–366. Springer, Heidelberg (2002)
Aliev, I., Fukshansky, L., Henk, M.: Generalized Frobenius Numbers: Bounds and Average Behavior. Acta Arith. 155, 53–62 (2012)
Aliev, I., Henk, M., Linke, E.: Integer Points in Knapsack Polytopes and s-covering Radius. Electron. J. Combin. 20(2), Paper 42, 17 (2013)
Barvinok, A.I.: Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. of Operations Research 19, 769–779 (1994)
Barvinok, A.I., Woods, K.: Short rational generating functions for lattice point problems. J. Amer. Math. Soc. 16, 957–979 (2003)
Bell, D.E.: A theorem concerning the integer lattice. Studies in Applied Mathematics 56(1), 187–188 (1977)
Beck, M., Robins, S.: A formula related to the Frobenius problem in two dimensions. In: Number Theory (New York, 2003), pp. 17–23. Springer, New York (2004)
Bruns, W., Gubeladze, J., Trung, N.V.: Problems and algorithms for affine semigroups. Semigroup Forum 64, 180–212 (2002)
Bruns, W., Koch, R.: NORMALIZ, computing normalizations of affine semigroups, ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/
Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM 42(2), 488–499 (1995)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, Undergraduate Texts in Mathematics. Springer, New York (1992)
De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation 38(4), 1273–1302 (2004)
De Loera, J.A., Haws, D.C., Hemmecke, R., Huggins, P., Sturmfels, B., Yoshida, R.: Short rational functions for toric algebra and applications. Journal of Symbolic Computation 38(2), 959–973 (2004)
De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and geometric ideas in the theory of discrete optimization. MOS-SIAM Series on Optimization, vol. 14, p. xx+322. Society for Industrial and Applied Mathematics (SIAM), Philadelphia; Mathematical Optimization Society, Philadelphia (2013)
Dobra, A., Karr, A.F., Sanil, P.A.: Preserving confidentiality of high-dimensional tabulated data: statistical and computational issues. Stat. Comput. 13, 363–370 (2003)
Doignon, J.-P.: Convexity in cristallographical lattices. Journal of Geometry 3(1), 71–85 (1973)
Eisenbrand, F., Hähnle, N.: Minimizing the number of lattice points in a translated polygon. In: Proceedings of SODA, pp. 1123–1130 (2013)
Fukshansky, L., Schürmann, A.: Bounds on generalized Frobenius numbers. European J. Combin. 3, 361–368 (2011)
Haase, C., Nill, B., Payne, S.: Cayley decompositions of lattice polytopes and upper bounds for h *-polynomials. J. Reine Angew. Math. 637, 207–216 (2009)
Hemmecke, R., Takemura, A., Yoshida, R.: Computing holes in semi-groups and its application to transportation problems. Contributions to Discrete Mathematics 4, 81–91 (2009)
Kannan, R.: Lattice translates of a polytope and the Frobenius problem. Combinatorica 12(2), 161–177 (1992)
Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math. 43(5), 1022–1035 (1991)
Pikhurko, O.: Lattice points in lattice polytopes. Mathematika 48(1-2), 15–24 (2001)
Ramírez Alfonsín, J.L.: Gaps in semigroups. Discrete Mathematics 308(18), 4177–4184 (2008)
Ramírez Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)
Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, New York (2006)
Schrijver, A.: Theory of linear and integer programming. Wiley (1998)
Scarf, H.E.: An observation on the structure of production sets with indivisibilities. Proceedings of the National Academy of Sciences 74(9), 3637–3641 (1977)
Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Progress in Mathematics, vol. 41. Birkhäuser, Basel (1996)
Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. AMS, Providence (1995)
Takemura, A., Yoshida, R.: A generalization of the integer linear infeasibility problem. Discrete Optimization 5, 36–52 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Aliev, I., De Loera, J.A., Louveaux, Q. (2014). Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf’s Theorem. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-07557-0_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07556-3
Online ISBN: 978-3-319-07557-0
eBook Packages: Computer ScienceComputer Science (R0)