Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8480))

Included in the following conference series:

  • 2244 Accesses

Abstract

In the context of multilabel classification, the learning from imbalanced data is getting considerable attention recently. Several algorithms to face this problem have been proposed in the late five years, as well as various measures to assess the imbalance level. Some of the proposed methods are based on resampling techniques, a very well-known approach whose utility in traditional classification has been proven.

This paper aims to describe how a specific characteristic of multilabel datasets (MLDs), the level of concurrence among imbalanced labels, could have a great impact in resampling algorithms behavior. Towards this goal, a measure named SCUMBLE, designed to evaluate this concurrence level, is proposed and its usefulness is experimentally tested. As a result, a straightforward guideline on the effectiveness of multilabel resampling algorithms depending on MLDs characteristics can be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, ch. 34, pp. 667–685. Springer US, Boston (2010)

    Google Scholar 

  2. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel Text Classification for Automated Tag Suggestion. In: Proc. ECML PKDD 2008 Discovery Challenge, Antwerp, Belgium, pp. 75–83 (2008)

    Google Scholar 

  3. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.: Protein Classification with Multiple Algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

    Article  Google Scholar 

  6. He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS One 7(6), 7155 (2012)

    Google Scholar 

  7. Li, C., Shi, G.: Improvement of learning algorithm for the multi-instance multi-label rbf neural networks trained with imbalanced samples. J. Inf. Sci. Eng. 29(4), 765–776 (2013)

    Google Scholar 

  8. Tepvorachai, G., Papachristou, C.: Multi-label imbalanced data enrichment process in neural net classifier training. In: IEEE Int. Joint Conf. on Neural Networks, IJCNN, 2008, pp. 1301–1307 (2008)

    Google Scholar 

  9. Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognit. Lett. 33(5), 513–523 (2012)

    Article  Google Scholar 

  10. Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 45(10), 3738–3750 (2012)

    Article  Google Scholar 

  11. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: A first approach to deal with imbalance in multi-label datasets. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 150–160. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Giraldo-Forero, A.F., Jaramillo-Garzón, J.A., Ruiz-Muñoz, J.F., Castellanos-Domínguez, C.G.: Managing imbalanced data sets in multi-label problems: A case study with the smote algorithm. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258, pp. 334–342. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. García, V., Sánchez, J., Mollineda, R.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Systems 25(1), 13–21 (2012)

    Article  Google Scholar 

  14. Szymański, P., Kajdanowicz, T.: MLG: Enchancing multi-label classification with modularity-based label grouping. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 431–440. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic Annotation and Retrieval of Music and Sound Effects. IEEE Audio, Speech, Language Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  16. Klimt, B., Yang, Y.: The Enron Corpus: A New Dataset for Email Classification Research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: Advances in Neural Information Processing Systems 14, vol. 14, pp. 681–687. MIT Press (2001)

    Google Scholar 

  18. Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic Code Assignment to Medical Text. In: Proc. Workshop on Biological, Translational, and Clinical Language Processing, BioNLP 2007, Prague, Czech Republic, pp. 129–136 (2007)

    Google Scholar 

  19. Godbole, S., Sarawagi, S.: Discriminative Methods for Multi-labeled Classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognit. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  21. Zhang, M., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  22. Clare, A.J., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Zhang, M., Zhou, Z.: A Review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng., doi:10.1109/TKDE.2013.39

    Google Scholar 

  24. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sciences 250, 113–141 (2013)

    Article  Google Scholar 

  25. Fernández, A., López, V., Galar, M., del Jesus, M.J., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl. Based Systems 42, 97–110 (2013)

    Article  Google Scholar 

  26. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. J. Artificial Intelligence Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  27. Kotsiantis, S.B., Pintelas, P.E.: Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics 1, 46–55 (2003)

    Google Scholar 

  28. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42, 203–231 (2001)

    Article  MATH  Google Scholar 

  29. Atkinson, A.B.: On the measurement of inequality. Journal of Economic Theory 2(3), 244–263 (1970)

    Article  MathSciNet  Google Scholar 

  30. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and Efficient Multilabel Classification in Domains with Large Number of Labels. In: Proc. ECML/PKDD Workshop on Mining Multidimensional Data, MMD 2008, Antwerp, Belgium, pp. 30–44 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Charte, F., Rivera, A., del Jesus, M.J., Herrera, F. (2014). Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, JS., Woźniak, M., Quintian, H., Corchado, E. (eds) Hybrid Artificial Intelligence Systems. HAIS 2014. Lecture Notes in Computer Science(), vol 8480. Springer, Cham. https://doi.org/10.1007/978-3-319-07617-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07617-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07616-4

  • Online ISBN: 978-3-319-07617-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics