Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High-Level Information Fusion for Risk and Accidents Prevention in Pervasive Oil Industry Environments

  • Conference paper
Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection (PAAMS 2014)

Abstract

Information fusion studies theories and methods to effectively combine data from multiple sensors and related information to achieve more specific inferences that could be achieved by using a single, independent sensor. Information fused from sensors and data mining analysis has recently attracted the attention of the research community for real-world applications. In this sense, the deployment of an Intelligent Offshore Oil Industry Environment will help to figure out a risky scenario based on the events occurred in the past related to anomalies and the profile of the current employee (role, location, etc.). In this paper we propose an information fusion model for an intelligent oil environment in which employees are alerted about possible risk situations while their are moving around their working place. The layered architecture, implements a reasoning engine capable of intelligently filtering the context profile of the employee (role, location) for the feature selection of an inter-transaction mining process. Depending on the employee contextual information he will receive intelligent alerts based on the prediction model that use his role and his current location. This model provides the big picture about risk analysis for that employee at that place in that moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sánchez Pi, N.: Intelligent techniques for context-aware systems (2011)

    Google Scholar 

  2. Gómez-Romero, J., Garcia, J., Kandefer, M., Llinas, J., Molina, J., Patricio, M., Prentice, M., Shapiro, S.: Strategies and techniques for use and exploitation of contextual information in high-level fusion architectures. In: 2010 13th Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2010)

    Google Scholar 

  3. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. International Journal of Neural Systems 21(04), 277–296 (2011)

    Article  Google Scholar 

  4. De Paz, J.F., Bajo, J., López, V.F., Corchado, J.M.: Biomedic organizations: An intelligent dynamic architecture for kdd. Information Sciences 224, 49–61 (2013)

    Article  MathSciNet  Google Scholar 

  5. Conti, M., Pietro, R.D., Mancini, L.V., Mei, A.: Distributed data source verification in wireless sensor networks. Information Fusion 10(4), 342–353 (2009)

    Article  Google Scholar 

  6. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB., vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  7. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12(3), 372–390 (2000)

    Article  Google Scholar 

  8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM SIGMOD Record 29, 1–12 (2000)

    Article  Google Scholar 

  9. Blasch, E., Llinas, J., Lambert, D., Valin, P., Das, S., Chong, C., Kokar, M., Shahbazian, E.: High level information fusion developments, issues, and grand challenges: Fusion 2010 panel discussion. In: 2010 13th Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2010)

    Google Scholar 

  10. Chong, C.Y., Liggins, M., et al.: Fusion technologies for drug interdiction. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 1994, pp. 435–441. IEEE (1994)

    Google Scholar 

  11. Gad, A., Farooq, M.: Data fusion architecture for maritime surveillance. In: Proceedings of the Fifth International Conference on Information Fusion, vol. 1, pp. 448–455. IEEE (2002)

    Google Scholar 

  12. Liggins, M.E., Bramson, A., et al.: Off-board augmented fusion for improved target detection and track. In: 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 295–299. IEEE (1993)

    Google Scholar 

  13. Ahlberg, S., Hörling, P., Johansson, K., Jöred, K., Kjellström, H., Mårtenson, C., Neider, G., Schubert, J., Svenson, P., Svensson, P., et al.: An information fusion demonstrator for tactical intelligence processing in network-based defense. Information Fusion 8(1), 84–107 (2007)

    Article  Google Scholar 

  14. Aldinger, T., Kao, J.: Data fusion and theater undersea warfare-an oceanographer’s perspective. In: MTTS/IEEE TECHNO-OCEAN 2004, OCEANS 2004, vol. 4, pp. 2008–2012. IEEE (2004)

    Google Scholar 

  15. Corona, I., Giacinto, G., Mazzariello, C., Roli, F., Sansone, C.: Information fusion for computer security: State of the art and open issues. Information Fusion 10(4), 274–284 (2009)

    Article  Google Scholar 

  16. Giacinto, G., Roli, F., Sansone, C.: Information fusion in computer security. Information Fusion 10(4), 272–273 (2009)

    Article  Google Scholar 

  17. Little, E.G., Rogova, G.L.: Ontology meta-model for building a situational picture of catastrophic events. In: 2005 8th International Conference on Information Fusion, vol. 1, 8 p. IEEE (2005)

    Google Scholar 

  18. Llinas, J.: Information fusion for natural and man-made disasters. In: Proceedings of the Fifth International Conference on Information Fusion, vol. 1, pp. 570–576. IEEE (2002)

    Google Scholar 

  19. Llinas, J., Moskal, M., McMahon, T.: Information fusion for nuclear, chemical, biological & radiological (ncbr) battle management support/disaster response management support. Center for MultiSource Information Fusion, School of Engineering and Applied Sciences, University of Buffalo, USA (2002)

    Google Scholar 

  20. Mattioli, J., Museux, N., Hemaissia, M., Laudy, C.: A crisis response situation model. In: 2007 10th International Conference on Information Fusion, pp. 1–7. IEEE (2007)

    Google Scholar 

  21. Bashi, A.: Fault detection for systems with multiple unknown modes and similar units (2010)

    Google Scholar 

  22. Bashi, A., Jilkov, V.P., Li, X.R.: Fault detection for systems with multiple unknown modes and similar units-part i. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 732–739. IEEE (2009)

    Google Scholar 

  23. Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion using dempster–shafer evidence theory. Information Fusion 8(4), 379–386 (2007)

    Article  Google Scholar 

  24. Heiden, U., Segl, K., Roessner, S., Kaufmann, H.: Ecological evaluation of urban biotope types using airborne hyperspectral hymap data. In: 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, pp. 18–22. IEEE (2003)

    Google Scholar 

  25. Khalil, A., Gill, M.K., McKee, M.: New applications for information fusion and soil moisture forecasting. In: 2005 8th International Conference on Information Fusion, vol. 2, p. 7. IEEE (2005)

    Google Scholar 

  26. Hubert-Moy, L., Corgne, S., Mercier, G., Solaiman, B.: Land use and land cover change prediction with the theory of evidence: a case study in an intensive agricultural region of france. In: Proceedings of the Fifth International Conference on Information Fusion, vol. 1, pp. 114–121. IEEE (2002)

    Google Scholar 

  27. Blasch, E., Kadar, I., Salerno, J., Kokar, M.M., Das, S., Powell, G.M., Corkill, D.D., Ruspini, E.H.: Issues and challenges of knowledge representation and reasoning methods in situation assessment (level 2 fusion). In: Defense and Security Symposium, International Society for Optics and Photonics, p. 623510 (2006)

    Google Scholar 

  28. Gómez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontological representation of context knowledge for visual data fusion. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 2136–2143. IEEE (2009)

    Google Scholar 

  29. Sanchez-Pi, N., Martí, L., Garcia, A.C.B.: Text classification techniques in oil industry applications. In: SOCO-CISIS-ICEUTE, pp. 211–220 (2013)

    Google Scholar 

  30. Berberidis, C., Angelis, L., Vlahavas, I.: Inter-transaction association rules mining for rare events prediction. In: Proc. 3rd Hellenic Conference on Artificial Intellligence (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayat Sanchez-Pi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanchez-Pi, N., Martí, L., Molina, J.M., Bicharra Garcia, A.C. (2014). High-Level Information Fusion for Risk and Accidents Prevention in Pervasive Oil Industry Environments. In: Corchado, J.M., et al. Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. PAAMS 2014. Communications in Computer and Information Science, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-07767-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07767-3_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07766-6

  • Online ISBN: 978-3-319-07767-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics