Abstract
Quantum key distribution (QKD) provides the intrinsically unconditional secure method to generate and transfer cryptographic keys based on laws of quantum mechanics. The introduction of QKD technology in satellite communications has changed the way to understand them, permitting secure and reliable global communications. In a real-life situation, however, ground-satellite QKD needs to handle a critical issue: the problem of on-board resource insufficiency. Privacy amplification (PA) determining the final key rate is a significant procedure in QKD post-processing. Though fast Fourier transform (FFT) technology can expedite PA procedure, it costs more computing and storage resources. With a novel division and aggregation scheduling (DAS) policy, we made some modifications to FFT implementation and proposed a resource-efficient PA scheme (called as DAS-FFT PA), which efficiently reduces the resource overhead of implementing overall PA module. Our experimental results demonstrate and confirm that our proposed scheme fulfills the expected target.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liang, L., Iyengar, S., Cruickshank, H., Sun, Z., Kulatunga, C., Fairhurst, G.: Security for flute over satellite networks. In: WRI International Conference on Communications and Mobile Computing, CMC 2009, vol. 3, pp. 485–491. IEEE (2009)
Mahmoud, B., Larrieu, N., Pirovano, A.: An aeronautical data link security overview. In: IEEE/AIAA 28th Digital Avionics Systems Conference, DASC 2009, p. 4-A. IEEE (2009)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175(150), p. 8 (1984)
Gisin, N., Ribordy, G., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74, 145–195 (2001)
Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics 4(1), 43 (2002)
Peng, C.Z., Yang, T., Bao, X.H., Zhang, J., Jin, X.M., Feng, F.Y., ... Pan, J.W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards ground-satellite global quantum communication. Physical Review Letters 94(15), 150501 (2005)
Marcikic, I., Lamas-Linares, A., Kurtsiefer, C.: Free-space quantum key distribution with entangled photons. Applied Physics Letters 89(10), 101122 (2006)
Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., ... Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical Review Letters 98(1), 010504 (2007)
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., ... Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nature Physics 3(7), 481–486 (2007)
Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., ... Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Physics 5(6), 389–392 (2009)
Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., ... Pan, J.W.: Experimental free-space quantum teleportation. Nature Photonics 4(6), 376–381 (2010)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Reviews of Modern Physics 81(3), 1301 (2009)
Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., ... Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and Earth. New Journal of Physics 10(3), 033038 (2008)
Bonato, C., Tomaello, A., Da Deppo, V., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New Journal of Physics 11(4), 45017 (2009)
Nordholt, J.E., Hughes, R.J., Morgan, G.L., Peterson, C.G., Wipf, C.C.: Present and future free-space quantum key distribution. In: High-Power Lasers and Applications, pp. 116–126. International Society for Optics and Photonics (2002)
Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New Journal of Physics 4(1), 82 (2002)
Hughes, R.J., Nordholt, J.E., Mc Cabe, K.P., Newell, R.T., Pterson, C.G.: Ground-satellite quantum communications. In: UQCC 2010, Los Alamos National Laboratory, LANL (2010)
Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41, 1915–1923 (1995)
Gray, R.M.: Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory 2 (2006)
Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)
Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press (2012)
Liu, B., Liu, B., Zhao, B., Zou, D., Wu, C., Yu, W., You, I.: A real-time privacy amplification scheme in quantum key distribution. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 453–458. Springer, Heidelberg (2013)
Liu, B., Zhao, B., Wei, Z., Wu, C., Su, J., Yu, W., ... Sun, S.: Qphone: a quantum security VoIP phone. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 477–478. ACM (2013)
Zou, D., Zhao, B., Wu, C., Liu, B., Yu, W., Ma, X., Zou, H.: CLIP: A Distributed Emulation Platform for Research on Information Reconciliation. In: 2012 15th International Conference on Network-Based Information Systems (NBiS), pp. 721–726. IEEE Press, New York (2012)
Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photonics 1, 343–348 (2007)
Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., ... Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New Journal of Physics 11(7), 75003 (2009)
Liu, Y., Chen, T.Y., Wang, J., Cai, W.Q., Wan, X., Chen, L.K., ... Pan, J.W.: Decoy-state quantum key distribution with polarized photons over 200 km. Optics Express 18(8), 8587–8594 (2010)
Sun, S.H., Ma, H.Q., Han, J.J., Liang, L.M., Li, C.Z.: Quantum key distribution based on phase encoding in long-distance communication fiber. Optics Letters 35(8), 1203–1205 (2010)
Smith, D.R.: The design of divide and conquer algorithms. Science of Computer Programming 5, 37–58 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, Z., Wu, C., Zhao, B., Liu, B. (2014). A Novel Resource-Efficient Privacy Amplification Scheme: Towards Ground-Satellite Quantum Key Distribution Post-processing. In: Cai, Z., Wang, C., Cheng, S., Wang, H., Gao, H. (eds) Wireless Algorithms, Systems, and Applications. WASA 2014. Lecture Notes in Computer Science, vol 8491. Springer, Cham. https://doi.org/10.1007/978-3-319-07782-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-07782-6_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07781-9
Online ISBN: 978-3-319-07782-6
eBook Packages: Computer ScienceComputer Science (R0)