Abstract
Pattern mining is one of the most important aspects of data mining. By far the most popular and well-known approach is frequent pattern mining. That is, to discover patterns that occur in many transactions. This approach has many virtues including monotonicity, which allows efficient discovery of all frequent patterns. Nevertheless, in practice frequent pattern mining rarely gives good results—the number of discovered patterns is typically gargantuan and they are heavily redundant.
Consequently, a lot of research effort has been invested toward improving the quality of the discovered patterns. In this chapter we will give an overview of the interestingness measures and other redundancy reduction techniques that have been proposed to this end.
In particular, we first present classic techniques such as closed and non-derivable itemsets that are used to prune unnecessary itemsets. We then discuss techniques for ranking patterns on how expected their score is under a null hypothesis—considering patterns that deviate from this expectation to be interesting. These models can either be static, as well as dynamic; we can iteratively update this model as we discover new patterns. More generally, we also give a brief overview on pattern set mining techniques, where we measure quality over a set of patterns, instead of individually. This setup gives us freedom to explicitly punish redundancy which leads to a more to-the-point results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487–499, 1994.
C. C. Aggarwal and P. S. Yu. A new framework for itemset generation. In PODS, pages 18–24. ACM, 1998.
R. Agrawal, T. Imielinksi, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207–216. ACM, 1993.
M. Al Hasan and M. J. Zaki. Output space sampling for graph patterns. PVLDB, 2(1):730–741, 2009.
M. Al Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153–162. IEEE, 2007.
R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD, pages 85–93, 1998.
M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct local pattern sampling by efficient two-step random procedures. In KDD, pages 582–590. ACM, 2011.
M. Boley, S. Moens, and T. Gärtner. Linear space direct pattern sampling using coupling from the past. In KDD, pages 69–77. ACM, 2012.
J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Min. Knowl. Disc., 7(1):5–22, 2003.
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlations. In SIGMOD, pages 265–276. ACM, 1997.
D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. MAFIA: A maximal frequent itemset algorithm. IEEE TKDE, 17(11):1490–1504, 2005.
T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD, pages 74–85, 2002.
C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE TIT, 14(3):462–467, 1968.
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang. Finding interesting associations without support pruning. IEEE TKDE, 13(1):64–78, 2001.
R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and expert systems. In Statistics for Engineering and Information Science. Springer-Verlag, 1999.
I. Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals Prob., 3(1):146–158, 1975.
T. De Bie. An information theoretic framework for data mining. In KDD, pages 564–572. ACM, 2011.
T. De Bie. Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min. Knowl. Disc., 23(3):407–446, 2011.
R. A. Fisher. On the interpretation of χ2from contingency tables, and the calculation of P. J. R. Statist. Soc., 85(1):87–94, 1922.
A. Gallo, N. Cristianini, and T. De Bie. MINI: Mining informative non-redundant itemsets. In ECML PKDD, pages 438–445. Springer, 2007.
F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In DS, pages 278–289, 2004.
A. Gionis, H. Mannila, and J. K. Seppänen. Geometric and combinatorial tiles in 0-1 data. In PKDD, pages 173–184. Springer, 2004.
A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining results via swap randomization. TKDD, 1(3):167–176, 2007.
B. Goethals and M. Zaki. Frequent itemset mining dataset repository (FIMI). http://fimi.ua.ac.be/, 2004.
W. Hämäläinen. Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures. Knowl. Inf. Sys., 32(2):383–414, 2012.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1–12. ACM, 2000.
D. Hand, N. Adams, and R. Bolton, editors. Pattern Detection and Discovery. Springer-Verlag, 2002.
S. Hanhijärvi, G. C. Garriga, and K. Puolamäki. Randomization techniques for graphs. In SDM, pages 780–791. SIAM, 2009.
S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and H. Mannila. Tell me something I don’t know: randomization strategies for iterative data mining. In KDD, pages 379–388. ACM, 2009.
H. Heikinheimo, J. K. Seppänen, E. Hinkkanen, H. Mannila, and T. Mielikäinen. Finding low-entropy sets and trees from binary data. In KDD, pages 350–359, 2007.
H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set selection. Lowentropy set selection. In SDM, pages 569–580, 2009.
A. Henelius, J. Korpela, and K. Puolamäki. Explaining interval sequences by randomization. In ECML PKDD, pages 337–352. Springer, 2013.
IBM. IBM Intelligent Miner User’s Guide, Version 1, Release 1, 1996.
S. Jaroszewicz and D. A. Simovici. Interestingness of frequent itemsets using bayesian networks as background knowledge. In KDD, pages 178–186. ACM, 2004.
E. Jaynes. On the rationale of maximum-entropy methods. Proc. IEEE, 70(9):939–952, 1982.
R. M. Karp. Reducibility among combinatorial problems. In Proc. Compl. Comp. Comput., pages 85–103, New York, USA, 1972.
K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding noisy tiles in binary databases. In SDM, pages 153–164. SIAM, 2010.
K.-N. Kontonasios and T. De Bie. Formalizing complex prior information to quantify subjective interestingness of frequent pattern sets. In IDA, pages 161–171, 2012.
J. Lijffijt, P. Papapetrou, and K. Puolamäki. A statistical significance testing approach to mining the most informative set of patterns. Data Min. Knowl. Disc., pages 1–26, 2012.
C. Lucchese, S. Orlando, and R. Perego. Mining top-k patterns from binary datasets in presence of noise. In SDM, pages 165–176, 2010.
M. Mampaey. Mining non-redundant information-theoretic dependencies between itemsets. In DaWaK, pages 130–141, 2010.
M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly with the most informative itemsets. TKDD, 6:1–44, 2012.
H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed representations. In KDD, pages 189–194, 1996.
H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. In KDD, pages 181–192, 1994.
H. Mannila, H. Toivonen, and A. I. Verkamo. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Disc., 1(3):241–258, 1997.
R. Meo. Theory of dependence values. ACM Trans. Database Syst., 25(3):380–406, 2000.
P. Miettinen and J. Vreeken. Model order selection for Boolean matrix factorization. In KDD, pages 51–59. ACM, 2011.
P. Miettinen and J. Vreeken. mdl4bmf: Minimum description length for Boolean matrix factorization. Technical Report MPI-I-2012-5-001, Max Planck Institute for Informatics, 2012.
P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis problem. IEEE TKDE, 20(10):1348–1362, 2008.
F. Moerchen, M. Thies, and A. Ultsch. Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowl. Inf. Sys., 29(1):55–80, 2011.
M. Ojala. Assessing data mining results on matrices with randomization. In ICDM, pages 959–964, 2010.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In ICDT, pages 398–416. ACM, 1999.
D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query approximation on binary transaction data. IEEE TKDE, 15(6):1409–1421, 2003.
J. Pei, A. K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and challenges. Data Min. Knowl. Disc., 1:4–2, 2001.
R. G. Pensa, C. Robardet, and J.-F. Boulicaut. A bi-clustering framework for categorical data. In PKDD, pages 643–650. Springer, 2005.
A. K. Poernomo and V. Gopalkrishnan. Towards efficient mining of proportional fault-tolerant frequent itemsets. In KDD, pages 697–706, New York, NY, USA, 2009. ACM.
G. Rasch. Probabilistic Models for Some Intelligence and Attainnment Tests. Danmarks paedagogiske Institut, 1960.
J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.
G. Schwarz. Estimating the dimension of a model. Annals Stat., 6(2):461–464, 1978.
J. K. Seppanen and H. Mannila. Dense itemsets. In KDD, pages 683–688, 2004.
A. Siebes and R. Kersten. A structure function for transaction data. In SDM, pages 558–569. SIAM, 2011.
A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, pages 393–404. SIAM, 2006.
N. Tatti. Computational complexity of queries based on itemsets. Inf. Process. Lett., 98(5):183–187, 2006.
N. Tatti. Maximum entropy based significance of itemsets. Knowl. Inf. Sys., 17(1):57–77, 2008.
N. Tatti and M. Mampaey. Using background knowledge to rank itemsets. Data Min. Knowl. Disc., 21(2):293–309, 2010.
N. Tatti and F. Moerchen. Finding robust itemsets under subsampling. In ICDM, pages 705–714. IEEE, 2011.
N. Tatti and J. Vreeken. Comparing apples and oranges - measuring differences between exploratory data mining results. Data Min. Knowl. Disc., 25(2):173–207, 2012.
N. Tatti and J. Vreeken. Discovering descriptive tile trees by fast mining of optimal geometric subtiles. In ECML PKDD. Springer, 2012.
C. Tew, C. Giraud-Carrier, K. Tanner, and S. Burton. Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Min. Knowl. Disc., pages 1–42, 2013.
J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress. Data Min. Knowl. Disc., 23(1):169–214, 2011.
C. Wang and S. Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, pages 730–735, 2006.
G. I. Webb. Self-sufficient itemsets: An approach to screening potentially interesting associations between items. TKDD, 4(1):1–20, 2010.
G. I. Webb. Filtered-top-k association discovery. WIREs DMKD, 1(3):183–192, 2011.
Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succinct summarization of transactional databases: an overlapped hyperrectangle scheme. In KDD, pages 758–766, 2008.
Y. Xiang, R. Jin, D. Fuhry, and F. Dragan. Summarizing transactional databases with overlapped hyperrectangles. Data Min. Knowl. Disc., 2010.
M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE, 12(3):372–390, 2000.
M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In SDM, pages 457–473. SIAM, 2002.
M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In KDD, Aug 1997.
Acknowledgments
Jilles Vreeken is supported by the Cluster of Excellence “Multimodal Computing and Interaction” within the Excellence Initiative of the German Federal Government. Nikolaj Tatti is supported by Academy of Finland grant 118653 (sc algodan).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Vreeken, J., Tatti, N. (2014). Interesting Patterns. In: Aggarwal, C., Han, J. (eds) Frequent Pattern Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-07821-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-07821-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07820-5
Online ISBN: 978-3-319-07821-2
eBook Packages: Computer ScienceComputer Science (R0)