Abstract
Image registration is increasingly being used to help radiologists when comparing temporal mammograms for lesion detection and classification. This paper evaluates the use of image and deformation features extracted from image registration results in order to detect abnormal cases with masses. Using a dataset of 264 mammographic images from 66 patients (33 normals and 33 with masses) results show that the use of a non-rigid registration method clearly improves detection results compared to no registration (AUC: 0.76 compared to 0.69). Moreover, feature combination using left and right breasts further improves the performance (AUC to 0.88) compared to single image features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis 14(2), 87–110 (2010)
Samulski, M., Karssemeijer, N.: Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Transactions on Medical Imaging 30(4), 1001–1009 (2011)
Marias, K., Behrenbruch, C.P., Parbhoo, S., Seifalian, A., Brady, M.: A registration framework for the comparison of mammogram sequences. IEEE Transactions on Medical Imaging 24(6), 782–790 (2005)
Díez, Y., Oliver, A., Lladó, X., Freixenet, J., Martí, J., Vilanova, J., Martí, R.: Revisiting intensity-based image registration applied to mammography. IEEE Transactions on Information Technology in Biomedicine 15(5), 716–725 (2011)
Martí, R., Raba, D., Oliver, A., Zwiggelaar, R.: Mammographic registration: Proposal and evaluation of a new approach. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 213–220. Springer, Heidelberg (2006)
Kwok, S.M., Chandrasekhar, R., Attikiouzel, Y., Rickard, M.: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Transactions on Medical Imaging 23(9), 1129–1140 (2004)
Tortajada, M., Oliver, A., Martí, R., Vilagran, M., Ganau, S., Tortajada, L., Sentís, M., Freixenet, J.: Adapting breast density classification from digitized to full-field digital mammograms. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 561–568. Springer, Heidelberg (2012)
Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. PAMI 28(4), 643–649 (2006)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)
Zitova, B.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)
Duin, R., Juszczack, P., Paclik, P., Pekalska, E., de Ridderand, D.M.J., Tax, D.: PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Martí, R., Díez, Y., Oliver, A., Tortajada, M., Zwiggelaar, R., Lladó, X. (2014). Detecting Abnormal Mammographic Cases in Temporal Studies Using Image Registration Features. In: Fujita, H., Hara, T., Muramatsu, C. (eds) Breast Imaging. IWDM 2014. Lecture Notes in Computer Science, vol 8539. Springer, Cham. https://doi.org/10.1007/978-3-319-07887-8_85
Download citation
DOI: https://doi.org/10.1007/978-3-319-07887-8_85
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07886-1
Online ISBN: 978-3-319-07887-8
eBook Packages: Computer ScienceComputer Science (R0)