Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Abnormal Mammographic Cases in Temporal Studies Using Image Registration Features

  • Conference paper
Breast Imaging (IWDM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8539))

Included in the following conference series:

Abstract

Image registration is increasingly being used to help radiologists when comparing temporal mammograms for lesion detection and classification. This paper evaluates the use of image and deformation features extracted from image registration results in order to detect abnormal cases with masses. Using a dataset of 264 mammographic images from 66 patients (33 normals and 33 with masses) results show that the use of a non-rigid registration method clearly improves detection results compared to no registration (AUC: 0.76 compared to 0.69). Moreover, feature combination using left and right breasts further improves the performance (AUC to 0.88) compared to single image features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis 14(2), 87–110 (2010)

    Article  Google Scholar 

  2. Samulski, M., Karssemeijer, N.: Optimizing case-based detection performance in a multiview CAD system for mammography. IEEE Transactions on Medical Imaging 30(4), 1001–1009 (2011)

    Article  Google Scholar 

  3. Marias, K., Behrenbruch, C.P., Parbhoo, S., Seifalian, A., Brady, M.: A registration framework for the comparison of mammogram sequences. IEEE Transactions on Medical Imaging 24(6), 782–790 (2005)

    Article  Google Scholar 

  4. Díez, Y., Oliver, A., Lladó, X., Freixenet, J., Martí, J., Vilanova, J., Martí, R.: Revisiting intensity-based image registration applied to mammography. IEEE Transactions on Information Technology in Biomedicine 15(5), 716–725 (2011)

    Article  Google Scholar 

  5. Martí, R., Raba, D., Oliver, A., Zwiggelaar, R.: Mammographic registration: Proposal and evaluation of a new approach. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 213–220. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kwok, S.M., Chandrasekhar, R., Attikiouzel, Y., Rickard, M.: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Transactions on Medical Imaging 23(9), 1129–1140 (2004)

    Article  Google Scholar 

  7. Tortajada, M., Oliver, A., Martí, R., Vilagran, M., Ganau, S., Tortajada, L., Sentís, M., Freixenet, J.: Adapting breast density classification from digitized to full-field digital mammograms. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 561–568. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. PAMI 28(4), 643–649 (2006)

    Article  Google Scholar 

  9. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  10. Zitova, B.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

  11. Duin, R., Juszczack, P., Paclik, P., Pekalska, E., de Ridderand, D.M.J., Tax, D.: PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martí, R., Díez, Y., Oliver, A., Tortajada, M., Zwiggelaar, R., Lladó, X. (2014). Detecting Abnormal Mammographic Cases in Temporal Studies Using Image Registration Features. In: Fujita, H., Hara, T., Muramatsu, C. (eds) Breast Imaging. IWDM 2014. Lecture Notes in Computer Science, vol 8539. Springer, Cham. https://doi.org/10.1007/978-3-319-07887-8_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07887-8_85

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07886-1

  • Online ISBN: 978-3-319-07887-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics