Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clearing Connections by Few Agents

  • Conference paper
Fun with Algorithms (FUN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8496))

Included in the following conference series:

Abstract

We study the problem of clearing connections by agents placed at some vertices in a directed graph. The agents can move only along directed paths. The objective is to minimize the number of agents guaranteeing that any pair of vertices can be connected by a underlying undirected path that can be cleared by the agents. We provide several results on the hardness, approximability and parameterized complexity of the problem. In particular, we show it to be: NP-hard, 2-approximable in polynomial-time, and solvable exactly in O(αn 322 α) time, where α is the number of agents in the solution. In addition, we give a simple linear-time algorithm optimally solving the problem in digraphs whose underlying graphs are trees. Finally, we discuss a related problem, where the task is to clear with a minimum number of agents a subgraph of the underlying graph containing its spanning tree. We show that this problem also admits a 2-approximation in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Prałat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM Journal on Discrete Mathematics 23(1), 233–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)

    Google Scholar 

  4. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Clean the graph before you draw it! Information Processing Letters 109(10), 463–467 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Parallel cleaning of a network with brushes. Discrete Applied Mathematics 158(5), 467–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gordinowicz, P., Nowakowski, R.J., Prałat, P.: Polish — Let us play the cleaning game. Theoretical Computer Science 463, 123–132 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1961)

    Article  MathSciNet  Google Scholar 

  8. Messinger, M.-E., Prałat, P., Nowakowski, R.J., Wormald, N.: Cleaning random d-regular graphs with brushes using a degree-greedy algorithm. In: Janssen, J., Prałat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 13–26. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning a network with brushes. Theoretical Computer Science 399, 191–205 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning with Brooms. Graphs and Combinatorics 27(2), 251–267 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Prałat, P.: Cleaning random graphs with brushes. Australasian Journal of Combinatorics 43, 237–251 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Prałat, P.: Cleaning random d-regular graphs with Brooms. Graphs and Combinatorics 27(4), 567–584 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ren, W., Zhao, Q.: A note on Algorithms for connected set cover problem and fault-tolerant connected set cover problem. Theoretical Computer Science 412(45), 6451–6454 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shuai, T.-P., Hu, X.-D.: Connected set cover problem and its applications. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Levcopoulos, C., Lingas, A., Nilsson, B.J., Żyliński, P. (2014). Clearing Connections by Few Agents. In: Ferro, A., Luccio, F., Widmayer, P. (eds) Fun with Algorithms. FUN 2014. Lecture Notes in Computer Science, vol 8496. Springer, Cham. https://doi.org/10.1007/978-3-319-07890-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07890-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07889-2

  • Online ISBN: 978-3-319-07890-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics