Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complex Question Answering: Homogeneous or Heterogeneous, Which Ensemble Is Better?

  • Conference paper
Natural Language Processing and Information Systems (NLDB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8455))

  • 1583 Accesses

Abstract

This paper applies homogeneous and heterogeneous ensembles to perform the complex question answering task. For the homogeneous ensemble, we employ Support Vector Machines (SVM) as the learning algorithm and use a Cross-Validation Committees (CVC) approach to form several base models. We use SVM, Hidden Markov Models (HMM), Conditional Random Fields (CRF), and Maximum Entropy (MaxEnt) techniques to build different base models for the heterogeneous ensemble. Experimental analyses demonstrate that both ensemble methods outperform conventional systems and heterogeneous ensemble is better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chali, Y., Hasan, S.A.: Query-focused Multi-document Summarization: Automatic Data Annotations and Supervised Learning Approaches. Journal of Natural Language Engineering 18(1), 109–145 (2012)

    Article  Google Scholar 

  2. Chali, Y., Hasan, S.A., Joty, S.R.: A SVM-Based Ensemble Approach to Multi-Document Summarization. In: Gao, Y., Japkowicz, N. (eds.) Canadian AI 2009. LNCS (LNAI), vol. 5549, pp. 199–202. Springer, Heidelberg (2009)

    Google Scholar 

  3. Chali, Y., Hasan, S.A., Joty, S.R.: Do Automatic Annotation Techniques Have Any Impact on Supervised Complex Question Answering? In: Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics (ACL-IJCNLP 2009), Suntec, Singapore, pp. 329–332 (2009)

    Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Edmundson, H.P.: New methods in automatic extracting. Journal of the ACM 16(2), 264–285 (1969)

    Article  MATH  Google Scholar 

  6. Gashler, M., Giraud-Carrier, C.G., Martinez, T.R.: Decision Tree Ensemble: Small Heterogeneous Is Better Than Large Homogeneous. In: ICMLA, pp. 900–905 (2008)

    Google Scholar 

  7. Joachims, T.: Making large-Scale SVM Learning Practical. In: Advances in Kernel Methods - Support Vector Learning (1999)

    Google Scholar 

  8. Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data. Biometrics 33(1), 159–174 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, C.Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: Proceedings of Workshop on Text Summarization Branches Out, Post-Conference Workshop of Association for Computational Linguistics, Barcelona, Spain, pp. 74–81 (2004)

    Google Scholar 

  10. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit (2002)

    Google Scholar 

  11. Parmanto, B., Munro, P.W., Doyle, H.R.: Improving committee diagnosis with resampling techniques. In: Advances in Neural Information Processing Systems, vol. 8, pp. 882–888 (1996)

    Google Scholar 

  12. Rooney, N., Patterson, D.W., Anand, S.S., Tsymbal, A.: Random subspacing for regression ensembles. In: FLAIRS Conference (2004)

    Google Scholar 

  13. Sekine, S., Nobata, C.A.: Sentence extraction with information extraction technique. In: Proceedings of the Document Understanding Conference (2001)

    Google Scholar 

  14. Silva, C., Ribeiro, B.: Rare class text categorization with SVM ensemble. Journal of Electrotechnical Review (Przeglad Elektrotechniczny) 1, 28–31 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chali, Y., Hasan, S.A., Mojahid, M. (2014). Complex Question Answering: Homogeneous or Heterogeneous, Which Ensemble Is Better?. In: Métais, E., Roche, M., Teisseire, M. (eds) Natural Language Processing and Information Systems. NLDB 2014. Lecture Notes in Computer Science, vol 8455. Springer, Cham. https://doi.org/10.1007/978-3-319-07983-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07983-7_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07982-0

  • Online ISBN: 978-3-319-07983-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics