Abstract
Spectral imaging is a useful tool in many fields of scientific research and industry. Spectral images contain both spatial and spectral information of the scene. Spectral information can be used for effective visualization of the features-of-interest. One approach is to use spectral image enhancement techniques to improve the diagnostic accuracy of medical image technologies like retinal imaging. In this paper, two multichannel spectral image enhancement methods and a technique to further improve the visualization are presented. The methods are tested on four multispectral retinal images which contain diabetic retinopathy lesions. Both of the methods improved the detectability and quantitative contrast of the diabetic lesions when compared to standard color images and are potentially valuable for clinicians and automated image analyses.
Chapter PDF
Similar content being viewed by others
Keywords
References
Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Lincoln Laboratory Journal 14, 3–28 (2003)
Kukkonen, S., Kälviäinen, H., Parkkinen, J.: Color features for quality control in ceramic tile industry. Opt. Eng. 40, 170–177 (2001)
Li, Q., He, X., Wang, Y., Liu, H., Xu, D., Guo, F.: Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 18, 100901-1–100901-28 (2013)
Alberti, K.G.M.M., Zimmet, P.Z.: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 15, 539–553 (1998)
Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano, J.D., Ferris III, F.L., Klein, R.: Retinopathy in Diabetes. Diabetes Care 27, s84–s87 (2004)
Hashimoto, N., Murakami, Y., Bautista, P.A., Yamaguchi, M., Obi, T., Ohyama, N., Uto, K., Kosugi, Y.: Multispectral image enhancement for effective visualization. Opt. Express 19, 9315–9329 (2011)
Mitsui, M., Murakami, Y., Obi, T., Yamaguchi, M., Ohyama, N.: Color enhancement in multispectral image using the Karhunen-Loeve transform. Opt. Rev. 12, 69–75 (2005)
Nuffer, L.L., Medvick, P.A., Foote, H.P., Solinsky, J.C.: Multispectral/ hyperspectral image enhancement for biological cell analysis. Cytom. Part A 69A, 897–903 (2006)
Hollaus, F., Gau, M., Sablatnig, R.: Enhancement of multispectral images of degraded documents by employing spatial information. In: 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 145–149 (2013)
Yang, C., Lu, L., Lin, H., Guan, R., Shi, X., Liang, Y.: A fuzzy-statistics-based principal component analysis (FS-PCA) method for multispectral image enhancement and display. IEEE Trans. Geosci. Remote Sensing 46, 3937–3947 (2008)
Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Pietilä, J., Uusitalo, H.: Spectral imaging of the human retina and computationally determined optimal illuminants for diabetic retinopathy lesion detection. J. Imaging Sci. Technol. 55, 030509-1–030509-10 (2011)
Tzeng, D.-Y., Berns, R.S.: A review of principal component analysis and its applications to color technology. Color Res. Appl. 30, 84–98 (2005)
Wyszecki, G., Stiles, W.S.: Color science: Concepts and methods, quantitative data and formulae. John Wiley & Sons, Inc., New York (1982)
Peli, E.: Contrast in complex images. J. Opt. Soc. Amer. 7, 2032–2040 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fält, P. et al. (2014). Multichannel Spectral Image Enhancement for Visualizing Diabetic Retinopathy Lesions. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds) Image and Signal Processing. ICISP 2014. Lecture Notes in Computer Science, vol 8509. Springer, Cham. https://doi.org/10.1007/978-3-319-07998-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-07998-1_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07997-4
Online ISBN: 978-3-319-07998-1
eBook Packages: Computer ScienceComputer Science (R0)