Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action-Scene Model for Recognizing Human Actions from Background in Realistic Videos

  • Conference paper
Web-Age Information Management (WAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8485))

Included in the following conference series:

Abstract

Using single information from person region fails to distinguish similar actions in realistic videos due to occlusions and variation of person. In this paper, we explore the problem of modeling action-scene context from the background regions of the realistic videos. The contextual cues of actions and scenes are formulated in a graphical model representation. A novel Action-Scene Model is proposed to mine the contextual cues with little prior knowledge. The proposed approach can infer actions from background regions directly and is a complement to the existing methods. In order to fuse the contextual cues effectively with other components, a context weightis introduced to measure the contributions of context based on the proposed model. We present experimental results on a realistic video dataset. The experiment results validate the effectiveness of Action-Scene Model in identifying the actions from background regions. And the learned contextual cues can achieve better performance than the existing methods especially for scene-dependent action categories.

Project supported by the National Basic Research 973 Program of China under Grant No. 2011CB302200-G, the Key Program of National Natural Science Foundation of China under Grant No. 61033007, the National Natural Science Foundation of China under Grant Nos. 61370074,61100026, and the Fundamental Research Funds for the Central Universities of China under Grant Nos. N120404007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV, pp. 1395–1402 (2005)

    Google Scholar 

  2. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Research (3), 993–1022 (2003)

    Google Scholar 

  3. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR, pp. 142–149 (2000)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  5. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained partbased models. IEEE Trans. Pattern Anal. 32(8), 1627–1645 (2010)

    Article  Google Scholar 

  8. Griffiths, T., Steyvers, M.: Find scientific topics. Proceedings of the National Academy of Sciences 101(suppl. 1), 5228–5235 (2004)

    Article  Google Scholar 

  9. Han, D., Bo, L., Sminchisescu, C.: Selection and context for action recognition. In: ICCV, pp. 1933–1940 (2009)

    Google Scholar 

  10. Ikizler-Cinbis, N., Sclaroff, S.: Object, scene and actions: Combining multiple features for human action recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 494–507. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Jiang, Y., Li, Z., Chang, S.: Modeling scene and object contexts for human action retrieval with few examples. IEEE Transactions on Circuits and Systems for Video Technology 21(5), 674–681 (2011)

    Article  Google Scholar 

  12. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  13. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos in the wild. In: CVPR, pp. 1996–2003 (2009)

    Google Scholar 

  14. Lowe, D.: Distinctive image features form scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR, pp. 2929–2936 (2009)

    Google Scholar 

  16. Motwani, T., Mooney, R.: Improving video activity recognition using object recognition and text mining. In: ECAI (2012)

    Google Scholar 

  17. Niebles, J., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. IJCV 79(3), 299–318 (2008)

    Article  Google Scholar 

  18. Oliv, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42(3), 142–175 (2001)

    Google Scholar 

  19. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press (2002)

    Google Scholar 

  20. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR, pp. 32–36 (2004)

    Google Scholar 

  21. Ullah, M., Parizi, S., Laptev, I.: Improving bag of features action recognition with non-local cues. In: BMVC, pp. 1–11 (2010)

    Google Scholar 

  22. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: CVPR, pp. 17–24 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Qu, W., Zhang, Y., Feng, S., Wang, D., Yu, G. (2014). Action-Scene Model for Recognizing Human Actions from Background in Realistic Videos. In: Li, F., Li, G., Hwang, Sw., Yao, B., Zhang, Z. (eds) Web-Age Information Management. WAIM 2014. Lecture Notes in Computer Science, vol 8485. Springer, Cham. https://doi.org/10.1007/978-3-319-08010-9_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08010-9_62

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08009-3

  • Online ISBN: 978-3-319-08010-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics