Abstract
Using proteins in saliva as biomarkers has great advantage in early diagnosis and prognosis evaluation of health conditions or diseases. In this article, we present a computational method for predicting secreted proteins in human saliva. Firstly, we collected currently known saliva-secreted proteins and the representatives that deem to be not extracellular secretion into saliva. Secondly, we pruned the negative data concerned the imbalance condition, and then extracted the relevant features from the physicochemical and sequence properties of all remained proteins. After that, a support vector machine classifier was built which got performance of average sensitivity, specificity, precision, accuracy and Matthews correlation coefficient value to 80.67%, 90.56%, 90.09%, 85.53% and 0.7168, respectively. These results indicated that the selected features and the model are effective. Finally, a screening test was implemented to all human proteins in UniProt and acquired 5811 proteins as predicted saliva-secreted proteins which may be used as biomarker candidates for further salivary diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., et al.: The pfam protein families database. Nucleic Acids Research 32(suppl. 1), D138–D141 (2004)
Bermejo-Pareja, F., Antequera, D., Vargas, T., Molina, J.A., Carro, E.: Saliva levels of abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurology 10(1), 108 (2010)
Boyle, J.O., Mao, L., Brennan, J.A., Koch, W.M., Eisele, D.W., Saunders, J.R., Sidransky, D.: Gene mutations in saliva as molecular markers for head and neck squamous cell carcinomas. The American Journal of Surgery 168(5), 429–432 (1994)
Chen, Y., Zhang, Y., Yin, Y., Gao, G., Li, S., Jiang, Y., Gu, X., Luo, J.: Spda web-based secreted protein database. Nucleic Acids Research 33(suppl. 1), D169–D173 (2005)
Cui, J., Han, L., Lin, H., Tang, Z., Ji, Z., Cao, Z., Li, Y., Chen, Y.: Advances in exploration of machine learning methods for predicting functional class and interaction profiles of proteins and peptides irrespective of sequence homology. Current Bioinformatics 2(2), 95–112 (2007)
Cui, J., Liu, Q., Puett, D., Xu, Y.: Computational prediction of human proteins that can be secreted into the bloodstream. Bioinformatics 24(20), 2370–2375 (2008)
Denny, P., Hagen, F.K., Hardt, M., Liao, L., Yan, W., Arellanno, M., Bassilian, S., Bedi, G.S., Boontheung, P., Cociorva, D., et al.: The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Journal of Proteome Research 7(5), 1994–2006 (2008)
Dimmer, E.C., Huntley, R.P., Alam-Faruque, Y., Sawford, T., O’Donovan, C., Martin, M.J., Bely, B., Browne, P., Chan, W.M., Eberhardt, R., et al.: The uniprot-go annotation database in 2011. Nucleic Acids Research 40(D1), D565–D570 (2012)
Fine, D.H., Markowitz, K., Furgang, D., Fairlie, K., Ferrandiz, J., Nasri, C., McKiernan, M., Donnelly, R., Gunsolley, J.: Macrophage inflammatory protein-1α: a salivary biomarker of bone loss in a longitudinal cohort study of children at risk for aggressive periodontal disease? Journal of Periodontology 80(1), 106–113 (2009)
Giusti, L., Baldini, C., Bazzichi, L., Ciregia, F., Tonazzini, I., Mascia, G., Giannaccini, G., Bombardieri, S., Lucacchini, A.: Proteome analysis of whole saliva: a new tool for rheumatic diseases–the example of sjögren’s syndrome. Proteomics 7(10), 1634–1643 (2007)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)
Hong, C.S., Cui, J., Ni, Z., Su, Y., Puett, D., Li, F., Xu, Y.: A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PloS One 6(2), e16875 (2011)
Hu, S., Loo, J.A., Wong, D.T.: Human saliva proteome analysis and disease biomarker discovery. Expert Review of Proteomics 4(4), 531–538 (2007)
Kaufman, E., Lamster, I.B.: The diagnostic applications of salivaa review. Critical Reviews in Oral Biology & Medicine 13(2), 197–212 (2002)
Li, S.J., Peng, M., Li, H., Liu, B.S., Wang, C., Wu, J.R., Li, Y.X., Zeng, R.: Sys-bodyfluid: a systematical database for human body fluid proteome research. Nucleic Acids Research 37(suppl. 1), D907–D912 (2009)
Mirrielees, J., Crofford, L.J., Lin, Y., Kryscio, R.J., Dawson III, D.R., Ebersole, J.L., Miller, C.S.: Rheumatoid arthritis and salivary biomarkers of periodontal disease. Journal of Clinical Periodontology 37(12), 1068–1074 (2010)
Pfaffe, T., Cooper-White, J., Beyerlein, P., Kostner, K., Punyadeera, C.: Diagnostic potential of saliva: current state and future applications. Clinical Chemistry 57(5), 675–687 (2011)
Rao, P.V., Reddy, A.P., Lu, X., Dasari, S., Krishnaprasad, A., Biggs, E., Roberts Jr., C.T., Nagalla, S.R.: Proteomic identification of salivary biomarkers of type-2 diabetes. Journal of Proteome Research 8(1), 239–245 (2009)
Sas, R., Dawes, C.: The intra-oral distribution of unstimulated and chewing-gum-stimulated parotid saliva. Archives of Oral Biology 42(7), 469–474 (1997)
Shiiki, N., Tokuyama, S., Sato, C., Kondo, Y., Saruta, J., Mori, Y., Shiiki, K., Miyoshi, Y., Tsukinoki, K.: Association between saliva psa and serum psa in conditions with prostate adenocarcinoma. Biomarkers 16(6), 498–503 (2011)
Shintani, S., Hamakawa, H., Ueyama, Y., Hatori, M., Toyoshima, T.: Identification of a truncated cystatin sa-i as a saliva biomarker for oral squamous cell carcinoma using the seldi proteinchip platform. International Journal of Oral and Maxillofacial Surgery 39(1), 68–74 (2010)
Sprenger, J., Fink, J.L., Karunaratne, S., Hanson, K., Hamilton, N.A., Teasdale, R.D.: Locate: a mammalian protein subcellular localization database. Nucleic Acids Research 36(suppl. 1), D230–D233 (2008)
Streckfus, C.F., Mayorga-Wark, O., Arreola, D., Edwards, C., Bigler, L., Dubinsky, W.P.: Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Investigation 26(2), 159–167 (2008)
Sun, Q.F., Sun, Q.H., Du, J., Wang, S.: Differential gene expression profiles of normal human parotid and submandibular glands. Oral Diseases 14(6), 500–509 (2008)
Tempero, M.A., Uchida, E., Takasaki, H., Burnett, D.A., Steplewski, Z., Pour, P.M.: Relationship of carbohydrate antigen 19-9 and lewis antigens in pancreatic cancer. Cancer Research 47(20), 5501–5503 (1987)
Wang, J., Liang, Y., Wang, Y., Cui, J., Liu, M., Du, W., Xu, Y.: Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification. PloS One 8(11), e80211 (2013)
Wong, D.T.: Salivary diagnostics for oral cancer. Journal of the California Dental Association 34(4), 303–308 (2006)
Wong, D.T.: Salivary diagnostics powered by nanotechnologies, proteomics and genomics. The Journal of the American Dental Association 137(3), 313–321 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Sun, Y., Zhou, C., Wang, J., Cao, Z., Du, W., Wang, Y. (2014). Computational Prediction of Human Saliva-Secreted Proteins. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-08171-7_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08170-0
Online ISBN: 978-3-319-08171-7
eBook Packages: Computer ScienceComputer Science (R0)