Abstract
Commonly, information systems are organized by the use of tables that are composed of a fixed number of columns representing the information system’s attributes. However, in a typical hospital scenario, patients may have a variable number of diagnoses and this data is recorded in the patients’ medical records in a random order. Treatments are prescribed based on these diagnoses, which makes it harder to mine meta-actions from healthcare datasets. In such scenario, the patients are not necessarily followed for a specific disease, but are treated for what they are diagnosed for. This makes it even more complex to prescribe personalized treatments since patients react differently to treatments based on their state (diagnoses). In this work, we present a method to extract personalized meta-actions from surgical datasets with variable number of diagnoses. We used the Florida State Inpatient Databases (SID), which is a part of the Healthcare Cost and Utilization Project (HCUP) [1] to demonstrate how to extract meta-actions and evaluate them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clinical classifications software (ccs) for icd-9-cm, http://www.hcup-us.ahrq.gov
Raś, Z.W., Wieczorkowska, A.A.: Action-rules: How to increase profit of a company. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 587–592. Springer, Heidelberg (2000)
Wang, K., Jiang, Y., Tuzhilin, A.: Mining actionable patterns by role models. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, pp. 16–26 (2006)
Raś, Z.W., Dardzińska, A.: Action rules discovery based on tree classifiers and meta-actions. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 66–75. Springer, Heidelberg (2009)
Touati, H., Kuang, J., Hajja, A., Raś, Z.W.: Personalized action rules for side effects object grouping. International Journal of Intelligence Science (IJIS) 3(1A), 24–33 (2013); Special Issue on “Knowledge Discovery”, G. Wang (Ed.)
Touati, H., Ras, Z.W.: Mining meta-actions for action rules reduction. Fundamenta Informaticae 127(1-4), 225–240 (2013)
Raś, Z.W., Dardzinska, A., Tsay, L.S., Wasyluk, H.: Association action rules. In: IEEE International Conference on Data Mining Workshops, ICDMW 2008, pp. 283–290 (2008)
Qiao, Y., Zhong, K., Wang, H., Li, X.: Developing event-condition-action rules in real-time active database. In: Proceedings of the 2007 ACM Symposium on Applied Computing, SAC 2007, pp. 511–516. ACM, New York (2007)
Rauch, J., Šimůnek, M.: Action rules and the guha method: Preliminary considerations and results. In: Proceedings of the 18th International Symposium on Foundations of Intelligent Systems, ISMIS 2009, pp. 76–87. Springer (2009)
Yang, Q., Chen, H.: Mining case for action recommendation. In: Proceedings of ICDM, pp. 522–529 (2002)
Pawlak, Z.: Information systems - theoretical foundations. Information Systems Journal 6, 205–218 (1981)
Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Syracuse (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Touati, H., Raś, Z.W., Studnicki, J., Wieczorkowska, A.A. (2014). Mining Surgical Meta-actions Effects with Variable Diagnoses’ Number. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-08326-1_26
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08325-4
Online ISBN: 978-3-319-08326-1
eBook Packages: Computer ScienceComputer Science (R0)