Abstract
Statistical Language Models are often difficult to derive because of the so-called “dimensionality curse”. Connectionist Language Models defeat this problem by utilizing a distributed word representation which is modified simultaneously as the neural network synaptic weights. This work describes certain improvements in the utilization of Connectionist Language Models for single-pass real-time speech recognition. These include comparing the word probabilities independently between the words and a novel mechanism of factorization of the lexical tree. Experiments comparing the improved model to the standard Connectionist Language Model in a Large-Vocabulary Continuous Speech Recognition (LVCSR) task show the new method obtains about a 33-fold speed increase while achieving a minimally worse word-level speech recognition performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jelinek, F.: Statistical methods for speech recognition. MIT press (1997)
Jelinek, F.: Interpolated estimation of markov source parameters from sparse data. Pattern Recognition in Practice, 381–397 (1980)
Katz, S.: Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing 35, 400–401 (1987)
Kneser, R., Ney, H.: Improved clustering techniques for class-based statistical language modelling. In: Third European Conference on Speech Communication and Technology (1993)
Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1995, vol. 1, pp. 181–184 (1995)
Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. The Journal of Machine Learning Research 3, 1137–1155 (2003)
Blitzer, J., Weinberger, K., Saul, L.K., Pereira, F.C.: Hierarchical distributed representations for statistical language modeling. Advances in Neural Information Processing Systems 18 (2005)
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29, 82–97 (2012)
Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics, pp. 246–252 (2005)
Bishop, C.M.: Neural networks for pattern recognition. Oxford university press (1995)
Ney, H., Haeb-Umbach, R., Tran, B.H., Oerder, M.: Improvements in beam search for 10000-word continuous speech recognition. In: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992, vol. 1, pp. 9–12. IEEE (1992)
Przepiórkowski, A.: Korpus ipi pan. Wersja wstepna. Instytut Podstaw Informatyki, Polska Akademia Nauk, Warszawa (2004)
Marasek, K., Brocki, Ł., Koržinek, D., Szklanny, K., Gubrynowicz, R.: User-centered design for a voice portal. In: Marciniak, M., Mykowiecka, A. (eds.) Bolc Festschrift. LNCS, vol. 5070, pp. 273–293. Springer, Heidelberg (2009)
Koržinek, D., Brocki, Ł., Gubrynowicz, R., Marasek, K.: Wizard of oz experiment for a telephony-based city transport dialog system. In: Proceedings of the IIS 2008 Workshop on Spoken Language Understanding and Dialogue Systems (2008)
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: A CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy) (2010) Oral Presentation
Graves, A.: Sequence transduction with recurrent neural networks. In: CoRR. Volume abs/1211.3711, Edinburgh, Scotland (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Brocki, Ł., Koržinek, D., Marasek, K. (2014). Improved Factorization of a Connectionist Language Model for Single-Pass Real-Time Speech Recognition. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-08326-1_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08325-4
Online ISBN: 978-3-319-08326-1
eBook Packages: Computer ScienceComputer Science (R0)