Abstract
The detection of congested areas can play an important role in the development of systems of traffic management. Usually, the problem is investigated under two main perspectives which concern the representation of space and the shape of the dense regions respectively. However, the adoption of movement tracking technologies enables the generation of mobility data in a streaming style, which adds an aspect of complexity not yet addressed in the literature. We propose a computational solution to mine dense regions in the urban space from mobility data streams. Our proposal adopts a stream data mining strategy which enables the detection of two types of dense regions, one based on spatial closeness, the other one based on temporal proximity. We prove the viability of the approach on vehicular data streams in the urban space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, J., Lai, C., Meng, X., Xu, J., Hu, H.: Clustering moving objects in spatial networks. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 611–623. Springer, Heidelberg (2007)
Gama, J., Gaber, M.M.: Learning from Data Streams: Processing Techniques in Sensor Networks. Springer (November 2007)
Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324. Springer, Heidelberg (2003)
Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on continuously moving objects. In: Liu, L., Reuter, A., Whang, K.-Y., Zhang, J. (eds.) ICDE, p. 71. IEEE Computer Society (2006)
Lai, C., Wang, L., Chen, J., Meng, X., Zeitouni, K.: Effective density queries for moving objects in road networks. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 200–211. Springer, Heidelberg (2007)
Wang, W., Yang, J., Muntz, R.R.: Sting: A statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) VLDB, pp. 186–195 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Loglisci, C., Malerba, D. (2014). Mining Dense Regions from Vehicular Mobility in Streaming Setting. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-08326-1_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08325-4
Online ISBN: 978-3-319-08326-1
eBook Packages: Computer ScienceComputer Science (R0)