Abstract
In this paper, we develop an autonomous construction system in which a self-contained ground robot builds a protective barrier by means of compliant pockets (i.e., filled bags). We present a stochastic control algorithm based on two biological mechanisms (stigmergy and templates) that takes advantage of compliant pockets for autonomous construction. The control algorithm guides the robot to build the structure without relying on any external motion capture system or external computer. We propose a statistical model to represent the structures built with the compliant pockets, and we provide a set of criteria for assessing the performance of the proposed system. To demonstrate the feasibility of the proposed system, real-robot experiments were carried out. In each experiment, the robot successfully built the structure. The results show the viability of the proposed autonomous construction system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The video of the experiment is available at: http://iridia.ulb.ac.be/supp/IridiaSupp2014-009.
References
C. Balaguer and M. Abderrahim, Robotics and Automation in Construction. InTech, 2008.
N. Napp, O. R. Rappoli, J. M. Wu, and R. Nagpal, “Materials and mechanisms for amorphous robotic construction,” in Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4879–4885, 2012.
G. A. Smithers, M. K. Nehls, M. A. Hovater, S. W. Evans, J. S. Miller, R. M. B. Jr, D. Beale, and F. Kilinc-Balci, “A one-piece lunar regolith bag garage prototype,” NASA Tech. Rep., 2007.
N. Khalili, Emergency Sandbag Shelter and Eco-Village: Manual-How to Build Your Own with Superadobe/Earthbags. Cal Earth Press, 2011.
R. Cannon, S. Henninger, M. Levandoski, J. Perkins, J. Pitchon, R. Swats, and R. Wessels, “Lunar regolith bagging system,” NASA Tech. Rep., 1990.
C. A. Theriot, B. Gersey, E. Bacon, Q. Johnson, Y. Zhang, J. Norman, I. Foley, R. Wilkins, J. Zhou, and H. Wu, “Potential use of in situ material composites such as regolith/polyethylene for shielding space radiation,” NASA Tech. Rep., 2010.
J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in a termite-inspired robot construction team,” Science, vol. 343, no. 6172, pp. 754–758, 2014.
G. Theraulaz, J. Gautrais, S. Camazine, and J.-L. Deneubourg, “The formation of spatial patterns in social insects: from simple behaviours to complex structures,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1807, pp. 1263–1282, 2003.
E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence. Oxford University Press, New York, 1999.
R. A. Brooks, P. Maes, M. J. Matarić, and G. More, “Lunar base construction robots,” in Proc. of the 1990 IEEE International Workshop on Intelligent Robots and Systems ‘Towards a New Frontier of Applications’ (IROS), pp. 389–392, 1990.
C. Melhuish, J. Welsby, and C. Edwards, “Using templates for defensive wall building with autonomous mobile ant-like robots,” in Proc. of Towards Intelligent Autonomous Mobile Robots, 1999.
J. Wawerla, G. S. Sukhatme, and M. J. Matarić, “Collective construction with multiple robots,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2696–2701, 2002.
Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor teams,” Autonomous Robots, vol. 33, no. 3, pp. 323–336, 2012.
J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M. Kohler, “Aerial robotic construction towards a new field of architectural research,” International Journal of Architectural Computing, vol. 10, no. 3, pp. 439–460, 2012.
S. Wismer, G. Hitz, M. Bonani, A. Gribovskiy, and S. Magnenat, “Autonomous construction of a roofed structure: Synthesizing planning and stigmergy on a mobile robot,” in Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5436–5437, 2012.
K. Petersen, R. Nagpal, and J. Werfel, “TERMES: An autonomous robotic system for three-dimensional collective construction,” in Proc. of Robotics: Science and Systems, VIII, MIT press, 2011.
N. Napp and R. Nagpal, “Distributed amorphous ramp construction in unstructured environments,” in Proc. of the Symposium on Distributed Autonomous Robotic Systems (DARS), 105–119, 2012.
S. Revzen, M. Bhoite, A. Macasieb, and M. Yim, “Structure synthesis on-the-fly in a modular robot,” in Proc. of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4797–4802, 2011.
B. Khoshnevis, M. P. Bodiford, K. H. Burks, E. Ethridge, D. Tucker, W. Kim, H. Toutanji, and M. R. Fiske, “Lunar contour crafting-a novel technique for ISRU-based habitat development,” in Proc. of American Institute of Aeronautics and Astronautics (AIAA) Conference, 2005.
M. Bonani et al., “The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research,” in Proc. of the 2010 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), pp. 4187–4193, 2010.
M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. Di Caro, F. Ducatelle, E. Ferrante, A. Förster, J. Guzzi, V. Longchamp, S. Magnenat, J. Martinez Gonzales, N. Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard, “Swarmanoid: A novel concept for the study of heterogeneous robotic swarms,” Robotics and Automation Magazine, IEEE, vol. 20, pp. 60–71, Dec 2013.
S. Magnenat, R. Philippsen, and F. Mondada, “Autonomous construction using scarce resources in unknown environments,” Autonomous Robots, vol. 33, no. 4, pp. 467–485, 2012.
M. P. Wand and M. C. Jones, Kernel smoothing, vol. 60. CRC Press, 1994.
Acknowledgments
The research presented in this paper was carried out in the framework of H2-SWARM, an European Science Foundation project partially funded by the Belgian F.R.S.-FNRS, the Italian CNR, and the Swiss NSF. The work was also partially supported by the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (grant 246939), and by the European Union project ASCENS (n. 257414). M. Dorigo acknowledges support from the Belgian F.R.S.-FNRS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
1.1 Parameters
The parameters used in the study are: \(d_{1} = 34\) cm, \(d_{2} = 43\) cm for the scenario; \(r_c = 90\) cm, \(d_m = 15\) cm for the robot; \(\delta _1 = 8\) cm, \(k_1 = 0.05\), \(\alpha = 2\), \(\delta _2 = 30\) cm, \(k_2 = 1\), \(\sigma = 1\) for the controller; and \(h_1 = 2.3\), \(h_2 = 4\) for the metrics.
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M. (2016). Autonomous Construction with Compliant Building Material. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_99
Download citation
DOI: https://doi.org/10.1007/978-3-319-08338-4_99
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08337-7
Online ISBN: 978-3-319-08338-4
eBook Packages: EngineeringEngineering (R0)