Abstract
Motivated by its superiority compared to conventional solutions in many applications, quantum computation has intensely been investigated from a theoretical, physical, and design perspective. While these investigations mainly focused on two-level quantum systems, recently also advantages and benefits of higher-level quantum systems became evident. Though this led to several approaches for the representation and realization of quantum functionality in different dimensions, no efficient solution for verifying their equivalence has been proposed yet. In the present paper, we address this problem. We propose a scheme which is capable of verifying the equivalence of two quantum operations regardless of the dimension of their underlying quantum system. The proposed scheme can be incorporated into data-structures such as Quantum Multiple-Valued Decision Diagrams (QMDD) particularly suited for the representation of quantum functionality and, by this, enables an efficient verification. Experiments confirm the efficiency of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD 32(6), 818–830 (2013)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457–3467 (1995)
Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Information Processing Letters 75(3), 101–107 (2000)
Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for d-level systems. Physical Review Letters 94(23), 230502 (2005)
Cabello, A., D’Ambrosio, V., Nagali, E., Sciarrino, F.: Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality. Physical Review A 84(3), 030302 (2011)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Physical Review Letters 74(20), 4091–4094 (1995)
Di, Y.M., Wei, H.R.: Synthesis of multivalued quantum logic circuits by elementary gates. Physical Review A 87, 012325 (2013)
Galiautdinov, A.: Generation of high-fidelity controlled-not logic gates by coupled superconducting qubits. Physical Review A 75(5), 052303 (2007)
Greentree, A.D., Schirmer, S., Green, F., Hollenberg, L.C., Hamilton, A., Clark, R.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Physical Review Letters 92(9), 097901 (2004)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)
Klimov, A., Guzman, R., Retamal, J., Saavedra, C.: Qutrit quantum computer with trapped ions. Physical Review A 67(6), 062313 (2003)
Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Physics 5(2), 134–140 (2008)
Mc Hugh, D., Twamley, J.: Trapped-ion qutrit spin molecule quantum computer. New Journal of Physics 7(1), 174 (2005)
Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press (2007)
Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible and quantum circuits. In: Int’l Symp. on Multi-Valued Logic, p. 30 (2006)
Moreva, E., Maslennikov, G., Straupe, S., Kulik, S.: Realization of four-level qudits using biphotons. Physical Review Letters 97(2), 023602 (2006)
Muthukrishnan, A., Stroud Jr, C.: Multivalued logic gates for quantum computation. Physical Review A 62(5), 052309 (2000)
Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Cleland, A.N., et al.: Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)
Niemann, P., Wille, R., Drechsler, R.: On the “Q” in QMDDs: Efficient representation of quantum functionality in the QMDD data-structure. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 125–140. Springer, Heidelberg (2013)
O’Brien, J.L., Akira Furusawa, J.V.: Photonic quantum technologies. Nature Photonics 3(12), 687–695 (2009)
Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conf., pp. 36–41 (2012)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Foundations of Computer Science, 124–134 (1994)
Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum circuits and states. In: Int’l Conf. on CAD, pp. 69–74 (2007)
Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, New York (December 2009)
Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)
Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org
Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. Quantum Information & Computation 10(9&10), 721–734 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Niemann, P., Wille, R., Drechsler, R. (2014). Equivalence Checking in Multi-level Quantum Systems. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-08494-7_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08493-0
Online ISBN: 978-3-319-08494-7
eBook Packages: Computer ScienceComputer Science (R0)