Abstract
Given a directed weighted graph G, a root r and k terminals, the k-Directed Steiner Tree problem is to find a minimum cost tree rooted at r and spanning all terminals. If this problem has several applications in multicast routing in packet switching networks, the modeling is not adapted anymore in networks based upon the circuit switching principle in which some nodes, called non diffusing nodes, are not able to duplicate packets. We define a more general problem, named Directed Steiner Tree with Limited number of Diffusing nodes (DSTLD), able to model the multicast in a network containing at most d diffusing nodes. We show that DSTLD is XP with respect to d, and use this result to build a \(\lceil \frac{k-1}{d} \rceil\)-approximation XP in d for DST. Finally, we prove that, under the assumption that NP \(\not\subseteq\) DTIME[n O(loglogn)], there is no polynomial approximation algorithm for DSTLD with ratio \(1+(\frac{1}{e} - \varepsilon) \cdot \frac{k}{d-1}\) for every constant ε > 0.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheng, X., Du, D.Z.: Steiner trees in industry, vol. 11. Kluwer (2001)
Voß, S.: Steiner tree problems in telecommunications. In: Handbook of Optimization in Telecommunications, pp. 459–492 (January 2006)
Rugeli, J., Novak, R.: Steiner tree algorithms for multicast protocols (1995)
Novak, R.: A note on distributed multicast routing in point-to-point networks. Computers & Operations Research, 1149–1164 (October 2001)
Karp, R.: Reducibility among combinatorial problems. Springer (1972)
Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica, 141–145 (1981)
Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proc. SODA, pp. 770–779 (2000)
Feige, U.: A threshold of ln n for approximating set cover. JACM, 634–652 (1998)
Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proc. STOC, pp. 585–594. ACM (2003)
Charikar, M., Chekuri, C., Cheung, T., Dai, Z.: Approximation algorithms for directed Steiner problems. In: Proc. SODA, pp. 192–200 (1998)
Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner tree problem. Algorithmica, 99–110 (1997)
Helvig, C., Robins, G., Zelikovsky, A.: An improved approximation scheme for the group Steiner problem. Networks (2001)
Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971)
Ding, B., Yu, J.X., Wang, S., Qin, L.: Finding top-k min-cost connected trees in databases. In: ICDE (2007)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in computer science edn. Springer (1999)
Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parameterized complexity of directed steiner tree on sparse graphs. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 671–682. Springer, Heidelberg (2013)
Malli, R., Zhang, X., Qiao, C.: Benefit of Multicasting in All-Optical Networks. In: SPIE Proc. Conf. All-Optical Networking (1998)
Lin, H.-c., Wang, S.-W.: Splitter Placement in All-Optical WDM Networks. In: Global Telecommunications Conference (2005)
Du, H., Jia, X., Wang, F., Thai, M.Y., Li, Y.: A Note on Optical Network with Nonsplitting Nodes. JCO (2005)
Guo, L., Wu, W., Wang, F., Thai, M.: Approximation for Minimum Multicast Route in Optical Network with Nonsplitting Nodes. JCO (2005)
Reinhard, V., Tomasik, J., Barth, D., Weisser, M.-A.: Bandwidth Optimization for Multicast Transmissions in Virtual Circuit Networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 859–870. Springer, Heidelberg (2009)
Reinhard, V., Cohen, J., Tomasik, J., Barth, D., Weisser, M.A.: Optimal configuration of an optical network providing predefined multicast transmissions. Comput. Netw. 56(8), 2097–2106 (2012)
Watel, D., Weisser, M.-A., Bentz, C., Barth, D.: Steiner Problems with Limited Number of Branching Nodes. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 310–321. Springer, Heidelberg (2013)
Gargano, L., Hell, P., Stacho, L., Vaccaro, U.: Spanning trees with bounded number of branch vertices. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 355–365. Springer, Heidelberg (2002)
Salazar-González, J.J.: The Steiner cycle polytope. European Journal of Operational Research 147(3), 671–679 (2003)
Steinová, M.: Approximability of the Minimum Steiner Cycle Problem (2010)
Tarjan, R.: Finding optimum branchings. Networks 7(1), 25–35 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Watel, D., Weisser, MA., Bentz, C., Barth, D. (2014). Directed Steiner Tree with Branching Constraint. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)