Abstract
Image processing and image analysis are often required in real life scenarios. Segmentation is one of the key concepts used and for which has not yet found a general solution that can be applied for every stage. In this paper a graph based segmentation strategy is proposed aimed to images resulting from baggage scanners used by the General Customs of the Republic of Cuba. This strategy is a bottom up one that combines the Minimum Spanning Tree and the mixing regions approaches. It defines a new standard for the two-component merge that considers both global and local features of the image. The numerical experiments show the effectiveness of the strategy for custom scanner images and how it can be easily adapted to other image types such as natural images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chan, T., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005)
Saleh, S., Kalyankar, N.V., Khamitkar, S.D.: Image Segmentation by Using Threshold Techniques. Journal of Computing 2(5) (2010)
Bin, L., Yeganeh, M.S.: Comparison for Image Edge Detection Algorithms. Journal of Computer Engineering (IOSRJCE) 2(6), 1–4 (2012)
Koffka, K.: Principles of Gestalt Psycology, Lund Humphries (1935)
Zhang, D., Lu, G.: Evaluation of mpeg-7 shape descriptors against other shape descriptors. Multimedia Systems (2003)
Binford, T.: Visual Perception by computer, Conference on Systems and Control (1971)
Huttenlocher, D., Klanderman, D., Rucklige, A.: Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence (1993)
Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)
Hojjatoleslami, S.A., Kittler, J.: Region Growing: A new approach. IEEE (1998)
Banerjee, B., Bhattacharjee, T., Chowdhury, N.: Color Image Segmentation Technique Using Natural Grouping of Pixels. University of Kolkata, India (2009)
Pan, Y., Douglas, J., Djouadi, S.M.: An Efficient Bottom-Up Image Segmentation Method Based on Region Growing, Region Competition and the Mumford Shah Functional. University of Tennessee, USA (2006)
Kamdi, S., Krishna, R.K.: Image Segmentation and Region Growing Algorithm. International Journal of Computer Technology ans Electronics Engineering (IJCTEE) 2(1) (2011)
Mcqueen, J.: Some Methods for Classification and Analysis on Multivariate Observations (1967)
Sag, T., Cunkas, M.: Development of Image Segmentation Techniques Using Swarm Intelligence. In: ICCIT, Konya, Turkey (2012)
Yerpude, A., Dubey, S.: Color Image Segmentations Using K-Medoids Clustering. International Journal Computer Technology & Applications 3(1), 152–154 (2012)
Cinque, L., Foresti, G., Lombardi, L.: A clustering fuzzy approach for image segmentation. The Journal of the Pattern Recognition Society 37, 1797–1807 (2004)
Dehariya, V., Shrivastava, S., Jain, R.: Clustering of Image Data Set Using K-Means and Fuzzy K-Means Algorithms. In: International Conference on CICN (2010)
Meyer, F.: The watershed concept and its use on segmentation: a brief history, Centre de Morphologie Mathématique, Paris (2012)
Kruskal, J.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In: Proceedings of the American Mathematical Society (1956)
Dijkstra, E.: Some theorems on spanning subtrees of a graph (1960)
Prim, R.C.: Shortest connection networks and some generalizations (1957)
Morris, O.J., de Lee, M.J.: Graph theory for image analysis: An approach baesd on the shortest spanning tree (1986)
Kwok, S.H.: A Fast Recursive Shortest Spanning Tree for Image Segmentation and Edge Detection (1997)
Felzenswalb, P.F., Huttenlocher, D.P.: Efficient graph based image segmentation. International Journal of Computer Vision, 167–181 (2004)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithm. MIT Laboratoy for Computer Science, Massachusetts (1990)
Nock, R., Nielsen, F.: Statistical Region Merging. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(11) (2004)
Hernández, G., Sánchez, R.E.: Segmentación de imágenes naturales usando colores de referencia en el espacio CIELab. In: Perception, Cognition and Robotics Sinergy (2004)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: Database of Human Segmented Natural Images ansd Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Conference on Computer Vision (2001)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward Objective Evaluation of Image Segmentation Algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(6) (2007)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: their training and application. Computing Vision and Image Undersatanding 61(1), 38–59 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zaila, Y.L., Díaz-Romañach, M.L.B., González-Hidalgo, M. (2014). A Graph Based Segmentation Strategy for Baggage Scanner Images. In: Perales, F.J., Santos-Victor, J. (eds) Articulated Motion and Deformable Objects. AMDO 2014. Lecture Notes in Computer Science, vol 8563. Springer, Cham. https://doi.org/10.1007/978-3-319-08849-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-08849-5_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08848-8
Online ISBN: 978-3-319-08849-5
eBook Packages: Computer ScienceComputer Science (R0)