Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tree Automata with Height Constraints between Brothers

  • Conference paper
Rewriting and Typed Lambda Calculi (RTA 2014, TLCA 2014)

Abstract

We define the tree automata with height constraints between brothers (TACBB H ). Constraints of equalities and inequalities between heights of siblings that restrict the applicability of the rules are allowed in TACBB H . These constraints allow to express natural tree languages like complete or balanced (like AVL) trees. We prove decidability of emptiness and finiteness for TACBB H , and also for a more general class that additionally allows to combine equality and disequality constraints between brothers.

The authors were supported by an FPU grant (first author) and the FORMALISM project (TIN2007-66523) from the Spanish Ministry of Education and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, New York (1998)

    Google Scholar 

  2. Barguñó, L., Creus, C., Godoy, G., Jacquemard, F., Vacher, C.: Decidable classes of tree automata mixing local and global constraints modulo flat theories. Logical Methods in Computer Science 9(2) (2013)

    Google Scholar 

  3. Bogaert, B., Tison, S.: Equality and Disequality Constraints on Direct Subterms in Tree Automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 161–171. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  4. Caron, A.-C., Seynhaeve, F., Tison, S., Tommasi, M.: Deciding the satisfiability of quantifier free formulae on one-step rewriting. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 103–117. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Comon, H., Jacquemard, F.: Ground reducibility is EXPTIME-complete. Information and Computation 187(1), 123–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Comon, H., Cortier, V.: Tree automata with one memory, set constraints and cryptographic protocols. Theoretical Computer Science 331(1), 143–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007), http://tata.gforge.inria.fr

  8. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with memory and constraints. Logical Methods in Computer Science 4(2:8) (2008)

    Google Scholar 

  9. Creus, C., Gascón, A., Godoy, G., Ramos, L.: The HOM problem is EXPTIME-complete. In: Logic in Computer Science (LICS), pp. 255–264 (2012)

    Google Scholar 

  10. Dauchet, M., Caron, A.C., Coquidé, J.L.: Automata for reduction properties solving. Journal of Symbolic Computation 20(2), 215–233 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doner, J.: Tree acceptors and some of their applications. Journal of Computer System Sciences 4, 406–451 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Filiot, E., Talbot, J., Tison, S.: Tree automata with global constraints. International Journal of Foundations of Computer Science 21(4), 571–596 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984)

    Google Scholar 

  14. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 1–68. Springer (1997)

    Google Scholar 

  15. Godoy, G., Giménez, O.: The HOM problem is decidable. Journal of the ACM 60(4), 23 (2013)

    Article  MathSciNet  Google Scholar 

  16. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality constraints modulo equational theories. Journal of Logic and Algebraic Programming 75(2), 182–208 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and Control 11, 3–29 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mongy, J.: Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. Ph.D. thesis, Laboratoire d’Informatique Fondamentale de Lille, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France (1981)

    Google Scholar 

  19. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages using formal language theory. ACM Transactions of Internet Technologies 5(4), 660–704 (2005)

    Article  Google Scholar 

  20. Treinen, R.: Predicate logic and tree automata with tests. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 329–343. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Creus, C., Godoy, G. (2014). Tree Automata with Height Constraints between Brothers. In: Dowek, G. (eds) Rewriting and Typed Lambda Calculi. RTA TLCA 2014 2014. Lecture Notes in Computer Science, vol 8560. Springer, Cham. https://doi.org/10.1007/978-3-319-08918-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08918-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08917-1

  • Online ISBN: 978-3-319-08918-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics