Abstract
There exist many orthogonal graph drawing algorithms that minimize edge crossings or edge bends, however they produce unsatisfactory drawings in many practical cases. In this paper we present a grid-based algorithm for drawing orthogonal graphs with nodes of prescribed size. It distinguishes by creating pleasant and compact drawings in relatively small running time. The main idea is to minimize the total edge length that implicitly minimizes crossings and makes the drawing easy to comprehend. The algorithm is based on combining local and global improvements. Local improvements are moving each node to a new place and swapping of nodes. Global improvement is based on constrained quadratic programming approach that minimizes the total edge length while keeping node relative positions.
Supported in part by project No. 2013/0033/2DP/2.1.1.1.0/13/APIA/VIAA/027.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)
Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings. In: Burkard, R., Woeginger, G. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer, Heidelberg (1997)
Biedl, T.C., Madden, B.P., Tollis, I.G.: The three-phase method: a unified approach to orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 391–402. Springer, Heidelberg (1997)
Bridgeman, S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: Interactivegiotto: an algorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 303–308. Springer, Heidelberg (1997)
Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and Quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)
Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7(5), 303–325 (1997)
Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)
Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: the 4M-Algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137. Springer, Heidelberg (1999)
Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)
Freivalds, K., Kikusts, P.: Optimum layout adjustment supporting ordering constraints in graph-like diagram drawing. In: Proceedings of Latvian Academy of Sciences, Section B, No. 1, pp. 43–51 (2001)
Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 235–250. Springer, Heidelberg (2006)
Kojima, K., Nagasaki, M., Miyano, S.: Fast grid layout algorithm for biological networks with sweep calculation. Bioinformatics 24(12), 1433–1441 (2008)
Kojima, K., Nagasaki, M., Miyano, S.: An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information. BMC Bioinformatics 11, 335 (2010)
Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley and Sons Inc., New York (1990)
Li, W., Kurata, H.: A grid layout algorithm for automatic drawing of biochemical networks. Bioinformatics 21(9), 2036–2042 (2005)
Six, J.M., Kakoulis, K.G., Tollis, I.G., et al.: Techniques for the refinement of orthogonal graph drawings. J. Graph Algorithms Appl. 4(3), 75–103 (2000)
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Freivalds, K., Glagoļevs, J. (2014). Graph Compact Orthogonal Layout Algorithm. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds) Combinatorial Optimization. ISCO 2014. Lecture Notes in Computer Science(), vol 8596. Springer, Cham. https://doi.org/10.1007/978-3-319-09174-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-09174-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09173-0
Online ISBN: 978-3-319-09174-7
eBook Packages: Computer ScienceComputer Science (R0)