Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8596))

Included in the following conference series:

  • 1213 Accesses

Abstract

Given a graph \(G=(V,E)\) of order \(n\) and an \(n\)-dimensional non-negative vector \(\mathbf{d}=(d(1),d(2),\ldots ,d(n))\), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum \(S\subseteq V\) such that every vertex \(v\) in \(V\setminus S\) (resp., in \(V\)) has at least \(d(v)\) neighbors in \(S\). The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the \(k\)-tuple dominating set problem (this \(k\) is different from the solution size), and so on, and subexponential fixed-parameter algorithms with respect to solution size for apex-minor-free graphs (so for planar graphs) are known. In this paper, we consider maximization versions of the problems; that is, for a given integer \(k\), the goal is to find an \(S\subseteq V\) with size \(k\) that maximizes the total sum of satisfied demands. For these problems, we design subexponential fixed-parameter algorithms with respect to \(k\) for apex-minor-free graphs.

This work is partially supported by KAKENHI No. 23500022, 24700001, 24106004, 25104521 and 25106508, the Kayamori Foundation of Informational Science Advancement and The Asahi Glass Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Appl. Math. 160(1), 53–60 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Chapelle, M.: Parameterized complexity of generalized domination problems on bounded tree-width graphs (2010). arXiv preprint arXiv:1004.2642

  5. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks (2013). arXiv preprint arXiv:1303.6785

  6. Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algorithms for vector domination and total vector domination in graphs. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Appl. Math. 161(6), 750–767 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (\(k\), \(r\))-center in planar graphs and map graphs. ACM Trans. Algorithms (TALG) 1(1), 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  11. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.i.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: 2005 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 637–646. IEEE (2005)

    Google Scholar 

  12. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between fpt algorithms and ptass. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 590–601. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  13. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness. Cornell University, Mathematical Sciences Institute (1992)

    Google Scholar 

  15. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Comb. Probab. Comput. 8, 547–553 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harary, F., Haynes, T.W.: Double domination in graphs. Ars Comb. 55, 201–214 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics, vol. 40. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  20. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  21. Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded branchwidth (2013). arXiv preprint arXiv:1306.5041

  22. Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded branchwidth. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 238–249. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ishii, T., Ono, H., Uno, Y. (2014). Subexponential Fixed-Parameter Algorithms for Partial Vector Domination. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds) Combinatorial Optimization. ISCO 2014. Lecture Notes in Computer Science(), vol 8596. Springer, Cham. https://doi.org/10.1007/978-3-319-09174-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09174-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09173-0

  • Online ISBN: 978-3-319-09174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics