Abstract
Given a graph \(G=(V,E)\) of order \(n\) and an \(n\)-dimensional non-negative vector \(\mathbf{d}=(d(1),d(2),\ldots ,d(n))\), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum \(S\subseteq V\) such that every vertex \(v\) in \(V\setminus S\) (resp., in \(V\)) has at least \(d(v)\) neighbors in \(S\). The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the \(k\)-tuple dominating set problem (this \(k\) is different from the solution size), and so on, and subexponential fixed-parameter algorithms with respect to solution size for apex-minor-free graphs (so for planar graphs) are known. In this paper, we consider maximization versions of the problems; that is, for a given integer \(k\), the goal is to find an \(S\subseteq V\) with size \(k\) that maximizes the total sum of satisfied demands. For these problems, we design subexponential fixed-parameter algorithms with respect to \(k\) for apex-minor-free graphs.
This work is partially supported by KAKENHI No. 23500022, 24700001, 24106004, 25104521 and 25106508, the Kayamori Foundation of Informational Science Advancement and The Asahi Glass Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011)
Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Appl. Math. 160(1), 53–60 (2012)
Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)
Chapelle, M.: Parameterized complexity of generalized domination problems on bounded tree-width graphs (2010). arXiv preprint arXiv:1004.2642
Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks (2013). arXiv preprint arXiv:1303.6785
Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algorithms for vector domination and total vector domination in graphs. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer, Heidelberg (2011)
Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Appl. Math. 161(6), 750–767 (2013)
Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)
Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (\(k\), \(r\))-center in planar graphs and map graphs. ACM Trans. Algorithms (TALG) 1(1), 33–47 (2005)
Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.i.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: 2005 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 637–646. IEEE (2005)
Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between fpt algorithms and ptass. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 590–601. Society for Industrial and Applied Mathematics (2005)
Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)
Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness. Cornell University, Mathematical Sciences Institute (1992)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)
Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Comb. Probab. Comput. 8, 547–553 (1999)
Harary, F., Haynes, T.W.: Double domination in graphs. Ars Comb. 55, 201–214 (2000)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics, vol. 40. Marcel Dekker, New York (1998)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded branchwidth (2013). arXiv preprint arXiv:1306.5041
Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded branchwidth. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 238–249. Springer, Heidelberg (2014)
Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008)
Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)
Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ishii, T., Ono, H., Uno, Y. (2014). Subexponential Fixed-Parameter Algorithms for Partial Vector Domination. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds) Combinatorial Optimization. ISCO 2014. Lecture Notes in Computer Science(), vol 8596. Springer, Cham. https://doi.org/10.1007/978-3-319-09174-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-09174-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09173-0
Online ISBN: 978-3-319-09174-7
eBook Packages: Computer ScienceComputer Science (R0)