Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Maximum Generalized Assignment with Convex Costs

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8596))

Included in the following conference series:

  • 1295 Accesses

Abstract

We consider a generalization of the maximum generalized assignment problem. We relax the hard constraints for the bin capacities, and introduce for every bin a cost function that is convex in the total load on this bin. These costs are subtracted from the profits of assigned items, and the task is to find an assignment maximizing the resulting net profit.

We show that even restricted cases of this problem remain strongly NP-complete, and identify two cases that can be solved in strongly polynomial time. Furthermore, we present a \((1-1/e)\)-approximation algorithm for the general case. This algorithm uses a configuration based integer programming formulation for a randomized rounding procedure. In order to turn the rounded solution into a feasible solution, we define appropriate estimators that linearize the convex costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Observe that the function \(h(w):=w- \frac{w^2}{2B}\) attains its global maximum \(\frac{B}{2}\) for \(w=B\).

  2. 2.

    Let \(B+\delta _j\) be the load on bin \(j\), where \(\sum _{j\in \mathcal {B}} \delta _j = 0\). Then, the total costs are \(\sum _{j \in \mathcal {B}} c_j(B+\delta _j) = \frac{1}{2B} \left( mB^2 + \sum _{j\in \mathcal {B}} \delta ^2_j\right) = \frac{mB}{2},\) which implies that \(\delta _j = 0\) for all \(j\).

References

  1. Antoniadis, A., Huang, C.-C., Ott, S., Verschae, J.: How to pack your items when you have to buy your knapsack. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 62–73. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)

    Article  MathSciNet  Google Scholar 

  3. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 352–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Cattrysse, D.G., Van Wassenhove, L.N.: A survey of algorithms for the generalized assignment problem. Eur. J. Oper. Res. 60(3), 260–272 (1992)

    Article  MATH  Google Scholar 

  5. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper. Res. 176(2), 774–793 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: improving the factor of 1–1/e. In: Proceedings of the 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 667–676 (2006)

    Google Scholar 

  9. Nutov, Z., Beniaminy, I., Yuster, R.: A \((1-1/e)\)-approximation algorithm for the maximum generalized assignment problem with fixed profits. Oper. Res. Lett. 34, 283–288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley and Sons, New York (1992)

    MATH  Google Scholar 

  12. Barman, S., Umboh, S., Chawla, S., Malec, D.: Secretary problems with convex costs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 75–87. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability (A Guide to the Theory of NP-Completeness). W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  14. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  15. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7, 656–666 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the German Research Foundation (DFG), grant GRK 1703/1 for the Research Training Group “Resource Efficiency in Interorganizational Networks – Planning Methods to Utilize Renewable Resources”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bender, M., Westphal, S. (2014). Maximum Generalized Assignment with Convex Costs. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds) Combinatorial Optimization. ISCO 2014. Lecture Notes in Computer Science(), vol 8596. Springer, Cham. https://doi.org/10.1007/978-3-319-09174-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09174-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09173-0

  • Online ISBN: 978-3-319-09174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics