Abstract
Configuring algorithms automatically to achieve high performance is becoming increasingly relevant and important in many areas of academia and industry. Algorithm configuration methods take a parameterized target algorithm, a performance metric and a set of example data, and aim to find a parameter configuration that performs as well as possible on a given data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Empirical Methods for the Analysis of Optimization Algorithms. Springer, Heidelberg (2010)
Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic tuning of decision procedures. In: Formal Methods in Computer Aided Design, pp. 27–34 (2007)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)
Kotthoff, L.: Reliability of computational experiments on virtualised hardware. JETAI (2013)
Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: A tale of millis and nanos: time measurements in virtual and physical machines. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 172–179. Springer, Heidelberg (2013)
Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime measurements in the cloud: observing, analyzing, and reducing variance. VLDB Endow. 3, 460–471 (2010)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: KDD, pp. 847–855 (2013)
Acknowledgements
The authors were supported by an Amazon Web Services research grant, European Union FP7 grant 284715 (ICON), a DFG Emmy Noether Grant, and Compute Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Geschwender, D., Hutter, F., Kotthoff, L., Malitsky, Y., Hoos, H.H., Leyton-Brown, K. (2014). Algorithm Configuration in the Cloud: A Feasibility Study. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-09584-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09583-7
Online ISBN: 978-3-319-09584-4
eBook Packages: Computer ScienceComputer Science (R0)