Abstract
We approach Černý’s conjecture using the Wedderburn- Artin theory. We first introduce the radical ideal of a synchronizing automaton, and then the natural notion of semisimple synchronizing automata. This is a rather broad class since it contains simple synchronizing automata like those in Černý’s series. Furthermore, semisimplicity gives the advantage of “factorizing” the problem of finding a synchronizing word into the sub-problems of finding words that are zeros in the projections into the simple components in the Wedderburn-Artin decomposition. This situation is applied to prove that Černý’s conjecture holds for the class of strongly semisimple synchronizing automata. These are automata whose sets of synchronizing words are cyclic ideals, or equivalently are ideal regular languages which are closed by takings roots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almeida, J., Margolis, S., Steinberg, B., Volkov, M.: Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Amer. Math. Soc. 361(3), 1429–1461 (2009)
Almeida, J., Steinberg, B.: Matrix Mortality and the Černý-Pin Conjecture. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer, Heidelberg (2009)
Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 402, no. Kombinatorika i Teoriya Grafov. IV, pp. 9–39 (2012)
Arnold, F., Steinberg, B.: Synchronizing groups and automata. Theoretical Computer Science 359(1-3), 101–110 (2006)
Babcsànyi, I.: Automata with Finite Congruence Lattices. Acta Cybernetica 18(1), 155–165 (2007)
Béal, M.P., Carton, O., Reutenauer, C.: Cyclic languages and Strongly cyclic languages. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 49–59. Springer, Heidelberg (1996)
Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2009)
Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Mat.-Fyz. Čas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)
Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)
Lam, T.Y.: A first course in noncommutative rings. Springer
Margolis, S., Pin, J.E., Volkov, M.: Words guaranteeing minimum image. Int. J. Found. Comput. Sci. 15, 259–276 (2004)
Perrin, D.: Completely Reducible Sets. Int. J. Alg. Comp. 23(4), 915–942 (2013)
Pribavkina, E., Rodaro, E.: Synchronizing automata with finitely many minimal synchronizing words. Information and Computation 209(3), 568–579 (2011)
Reis, R., Rodaro, E.: Regular Ideal Languages and Synchronizing Automata. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 205–216. Springer, Heidelberg (2013)
Reis, R., Rodaro, E.: Ideal Regular Languages and Strongly Connected Synchronizing Automata (preprint, 2014)
Rystov, I.: Reset words for commutative and solvable automata. Theor. Comp. Sci. 172(1-2, 10), 273–279 (1997)
Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press
Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comp. Sci. 412(39, 9), 5487–5491 (2011)
Thierrin, G.: Simple automata. Kybernetika 6(5), 343–350 (1970)
Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Almeida, J., Rodaro, E. (2014). Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Shur, A.M., Volkov, M.V. (eds) Developments in Language Theory. DLT 2014. Lecture Notes in Computer Science, vol 8633. Springer, Cham. https://doi.org/10.1007/978-3-319-09698-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-09698-8_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09697-1
Online ISBN: 978-3-319-09698-8
eBook Packages: Computer ScienceComputer Science (R0)