Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semisimple Synchronizing Automata and the Wedderburn-Artin Theory

  • Conference paper
Developments in Language Theory (DLT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8633))

Included in the following conference series:

  • 506 Accesses

Abstract

We approach Černý’s conjecture using the Wedderburn- Artin theory. We first introduce the radical ideal of a synchronizing automaton, and then the natural notion of semisimple synchronizing automata. This is a rather broad class since it contains simple synchronizing automata like those in Černý’s series. Furthermore, semisimplicity gives the advantage of “factorizing” the problem of finding a synchronizing word into the sub-problems of finding words that are zeros in the projections into the simple components in the Wedderburn-Artin decomposition. This situation is applied to prove that Černý’s conjecture holds for the class of strongly semisimple synchronizing automata. These are automata whose sets of synchronizing words are cyclic ideals, or equivalently are ideal regular languages which are closed by takings roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, J., Margolis, S., Steinberg, B., Volkov, M.: Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Amer. Math. Soc. 361(3), 1429–1461 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almeida, J., Steinberg, B.: Matrix Mortality and the Černý-Pin Conjecture. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 402, no. Kombinatorika i Teoriya Grafov. IV, pp. 9–39 (2012)

    Google Scholar 

  4. Arnold, F., Steinberg, B.: Synchronizing groups and automata. Theoretical Computer Science 359(1-3), 101–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babcsànyi, I.: Automata with Finite Congruence Lattices. Acta Cybernetica 18(1), 155–165 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Béal, M.P., Carton, O., Reutenauer, C.: Cyclic languages and Strongly cyclic languages. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 49–59. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2009)

    Google Scholar 

  8. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Mat.-Fyz. Čas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)

    Google Scholar 

  9. Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  10. Lam, T.Y.: A first course in noncommutative rings. Springer

    Google Scholar 

  11. Margolis, S., Pin, J.E., Volkov, M.: Words guaranteeing minimum image. Int. J. Found. Comput. Sci. 15, 259–276 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Perrin, D.: Completely Reducible Sets. Int. J. Alg. Comp. 23(4), 915–942 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pribavkina, E., Rodaro, E.: Synchronizing automata with finitely many minimal synchronizing words. Information and Computation 209(3), 568–579 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Reis, R., Rodaro, E.: Regular Ideal Languages and Synchronizing Automata. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 205–216. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Reis, R., Rodaro, E.: Ideal Regular Languages and Strongly Connected Synchronizing Automata (preprint, 2014)

    Google Scholar 

  16. Rystov, I.: Reset words for commutative and solvable automata. Theor. Comp. Sci. 172(1-2, 10), 273–279 (1997)

    Article  Google Scholar 

  17. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press

    Google Scholar 

  18. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comp. Sci. 412(39, 9), 5487–5491 (2011)

    Article  MATH  Google Scholar 

  19. Thierrin, G.: Simple automata. Kybernetika 6(5), 343–350 (1970)

    MATH  MathSciNet  Google Scholar 

  20. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Almeida, J., Rodaro, E. (2014). Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Shur, A.M., Volkov, M.V. (eds) Developments in Language Theory. DLT 2014. Lecture Notes in Computer Science, vol 8633. Springer, Cham. https://doi.org/10.1007/978-3-319-09698-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09698-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09697-1

  • Online ISBN: 978-3-319-09698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics