Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Game-Theoretic Computational Interpretation of Proofs in Classical Analysis

  • Chapter
Gentzen's Centenary

Abstract

It has been shown by Escardó and the first author that a functional interpretation of proofs in analysis can be given by the product of selection functions, a mode of recursion that has an intuitive reading in terms of the computation of optimal strategies in sequential games. We argue that this result has genuine practical value by interpreting some well-known theorems of mathematics and demonstrating that the product gives these theorems a natural computational interpretation that can be clearly understood in game theoretic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As in [18] we adopt Kuroda’s variant of the negative translation.

  2. 2.

    In these papers DC is given in a slightly different form to ours.

  3. 3.

    This is a stronger notion than the one introduced in [11] for the more general case where the quantifiers are not necessarily attainable.

  4. 4.

    Assuming stability of atomic formulas.

  5. 5.

    Note that we are replacing the standard conclusion \(\varphi _{\omega f}(f(\omega f),qf)\) with a stronger variant \(\forall i \leq \omega f\,\varphi _{i}(fi,qf)\). This is not essential as one can, given an \(\omega\), define \(\tilde{\omega }(f) =\mu i \leq \omega (f)\neg \varphi _{i}(fi,qf)\) so that \(\varphi _{\tilde{\omega }f}(f(\tilde{\omega }f),qf)\) implies \(\forall i \leq \omega f\,\varphi _{i}(fi,qf)\). We prefer the version \(\forall i \leq \omega f\,\varphi _{i}(fi,qf)\) since (1) we can directly realise, and (2) it makes the interpretation more intuitive by viewing ω f as a bound up to which the play f is required to be “optimal”.

References

  1. J. Avigad, S. Feferman, Gödel’s functional (“Dialectica”) interpretation, in Handbook of Proof Theory, ed. by S.R. Buss. Studies in Logic and the Foundations of Mathematics, vol. 137. (Amsterdam, North Holland, 1998), pp. 337–405

    Google Scholar 

  2. J. Avigad, P. Gerhardy, H. Towsner, Local stability of ergodic averages. Trans. Am. Math. Soc. 362, 261–288 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Berardi, M. Bezem, T. Coquand, On the computational content of the axiom of choice. J. Symb. Log. 63(2), 600–622 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. U. Berger, A computational interpretation of open induction. Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, 2004, ed. by F. Titsworth, pp. 326–334

    Google Scholar 

  5. U. Berger, P. Oliva, Modified bar recursion and classical dependent choice. Lect. Notes Log. 20, 89–107 (2005)

    MathSciNet  Google Scholar 

  6. U. Berger, P. Oliva, Modified bar recursion. Math. Struct. Comput. Sci. 16, 163–183 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. U. Berger, H. Schwichtenberg, W. Buchholz, Refined program extraction from classical proofs. Ann. Pure Appl. Log. 114, 3–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.H. Escardó, P. Oliva, Computational interpretations of analysis via products of selection functions, in Computability in Europe 2010, LNCS 6158, ed. by F. Ferreira, B. Lowe, E. Mayordomo, L.M. Gomes (Springer, New York, 2010), pp. 141–150

    Google Scholar 

  9. M.H. Escardó, P. Oliva, Selection functions, bar recursion, and backward induction. Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

    Article  MATH  Google Scholar 

  10. M. Escardó, P. Oliva, Bar recursion and products of selection functions, J. Sym. Log. 80(1), 1–28 (2015)

    Article  Google Scholar 

  11. M.H. Escardó, P. Oliva, Sequential games and optimal strategies. Roy. Soc. Proc. A 467, 1519–1545 (2011)

    Article  MATH  Google Scholar 

  12. M.H. Escardó, P. Oliva, T. Powell, System T and the product of selection functions, in Proceedings of CSL’11, vol. 12 (LIPIcs, 2011), pp. 233–247

    Google Scholar 

  13. H. Friedman, Classically and intuitionistically provably recursive functions, in Higher Set Theory, ed. by D. Scott, G. Müller, Lecture Notes in Mathematics vol. 669 (Springer, Berlin, 1978), pp. 21–28

    Google Scholar 

  14. J. Gaspar, U. Kohlenbach, On Tao’s “finitary” infinite pigeonhole principle. J. Symb. Log. 75(1), 355–371 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  16. W.A. Howard, Functional interpretation of bar induction by bar recursion. Compos. Math. 20, 107–124 (1968)

    MATH  Google Scholar 

  17. W.A. Howard, Ordinal analysis of bar recursion of type zero. Compos. Math. 42, 105–119 (1981)

    Google Scholar 

  18. U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Monographs in Mathematics (Springer, New York, 2008)

    Google Scholar 

  19. G. Kreisel, On the interpretation of non-finitist proofs, part I. J. Symb. Log. 16, 241–267 (1951)

    MATH  MathSciNet  Google Scholar 

  20. G. Kreisel, On the interpretation of non-finitist proofs, part II: Interpretation of number theory. J. Symb. Log. 17, 43–58 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Luckhardt, Extensional Gödel Functional Interpretation: A Consistency Proof of Classical Analysis, Lecture Notes in Mathematics. vol. 306 (Springer, Berlin, 1973)

    Google Scholar 

  22. P. Oliva, Understanding and using Spector’s bar recursive interpretation of classical analysis, Proceedings of CiE’2006, LNCS 3988, ed. by A. Beckmann, U. Berger, B.Löwe, J.V. Tucker (Springer, New York, 2006), pp. 423–234

    Google Scholar 

  23. P. Oliva, T. Powell, A constructive interpretation of Ramsey’s theorem via the product of selection functions. Math. Struct. Comput. Sci. (2014), http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9414884&fileId=S0960129513000340. doi:http://dx.doi.org/10.1017/S0960129513000340, 24 p.

  24. C. Parsons, On a number theoretic choice schema and its relation to induction. Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N.Y. 1968, ed. by A. Kino, J. Myhill, R.E. Vesley (Amserdam, North Holland, 1970), pp. 459–473

    Google Scholar 

  25. P. Safarik, U. Kohlenbach, On the computational content of the Bolzano-Weierstrass principle. Math. Log. Q. 56, 508–532 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. S.G. Simpson, Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic (Springer, Berlin, 1999)

    Google Scholar 

  27. C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics, in Recursive Function Theory: Proc. Symposia in Pure Mathematics, vol. 5, ed. by F.D.E. Dekker (American Mathematical Society, Providence, 1962), pp. 1–27

    Chapter  Google Scholar 

  28. T. Tao, Soft analysis, hard analysis, and the finite convergence principle. Essay, http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/, 2007

  29. T. Tao, The correspondence principle and finitary ergodic theory. Essay, http://terrytao.wordpress.com/2008/08/30/the-correspondence-principle-and-finitary-ergodic-theory/, 2008

Download references

Acknowledgements

The first author gratefully acknowledges support of the Royal Society (grant 516002.K501/RH/kk). The second author acknowledges the support of an EPSRC doctoral training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oliva, P., Powell, T. (2015). A Game-Theoretic Computational Interpretation of Proofs in Classical Analysis. In: Kahle, R., Rathjen, M. (eds) Gentzen's Centenary. Springer, Cham. https://doi.org/10.1007/978-3-319-10103-3_18

Download citation

Publish with us

Policies and ethics