Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decentralized Movement Analysis

  • Chapter
  • First Online:
Computational Movement Analysis

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

This chapter investigates the implications of decentralized spatial computing for Computational Movement Analysis (CMA). As more and more moving objects are permanently connected to some communication network and to each other, movement analysis is no longer limited to desktop computers collecting movement data first and then analyzing it. By contrast, networked and communicating agents start analyzing information about their movement in a decentralized but collaborative way. This chapter illustrates decentralized spatial analysis concepts for the CMA tasks of monitoring network flow in transportation systems, movement pattern mining, point clustering, and privacy-aware location-based services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This book is solely about the analysis of movement data. Even though the distinction between data capture and data analysis gets occasionally a bit blurred in this chapter, there are important aspects of wireless sensor networks involving movement that are not covered in this chapter. For example, target tracking, that is in essence the capturing of raw positional data of moving objects, is not covered. Also information routing, another wireless sensor network classic, contributes to setting up and maintaining the network infrastructure, but is not considered analysis. Readers interested in such issues are referred to the introductory text on wireless sensor networks in Zhao and Guibas (2004).

  2. 2.

    Recall the SNAP and SPAN ontologies (Grenon and Smith 2004). Endurants or continuants are things that endure through time, e.g. a moving object, this printed book (SNAP ontology). Perdurants or occurrents by contrast are things that occur in time, e.g. the reader reading this book (SPAN ontology).

  3. 3.

    In Both et al. (P19. 2013) “fish” is used as a shorthand for moving objects because the work was initiated in response to a set of problems coming out of a river health monitoring system deployed in the Murray River, Australia, tracking real fish with RF transmitters and riverside cordons (Koehn et al. 2008).

  4. 4.

    Think of Pac-Man moving through his maze and eating away the pellets.

  5. 5.

    Clearly, in most current ICT applications the system provider maintains a detailed log of the whereabouts and activities of its customers, but from a conceptual point of view underlining the argument of the mobility privacy opportunity such an omniscient system provider database is not a necessity.

References

  • Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1), 3–27.

    Article  Google Scholar 

  • Arampatzis, T., Lygeros, J., & Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control and Mediterrean Conference on Control and Automation, pp. 719–724.

    Google Scholar 

  • Augusto, J. C., & Shapiro, D. (Eds.). (2007). Advances in Ambient Intelligence, Volume 164 of Frontiers in Artificial Intelligence and Applications. Amsterdam, NL: IOS Press.

    Google Scholar 

  • Both, A., Duckham, M., Laube, P., Wark, T., & Yeoman, J. (2013). Decentralized monitoring of moving objects in a transportation network augmented with checkpoints. The Computer Journal, 56(12), 1432–1449. doi:10.1093/comjnl/bxs117.

    Article  Google Scholar 

  • Correll, N., & Martinoli, A. (2006). Collective inspection of regular structures using a swarm of miniature robots. In J. Ang, J. Khatib, & O. Khatib (Eds.), Experimental Robotics IX, The 9th International Symposium on Experimental Robotics (ISER), Singapore, June 18–21 (Vol. 21, pp. 375–385). Springer Tracts in Advanced Robotics. Berlin: Springer.

    Google Scholar 

  • Datta, S., Bhaduri, K., Giannella, C., Kargupta, H., & Wolff, R. (2006). Distributed data mining in peer-to-peer networks. IEEE Internet Computing, 10(4), 18–26.

    Article  Google Scholar 

  • Dillenburg, J. F., Wolfson, O., & Nelson, P. C. (2002). The intelligent travel assistant. In The IEEE 5th International Conference on Intelligent Transportation Systems, pp. 691–696.

    Google Scholar 

  • Dobson, J. E., & Fisher, P. F. (2003). Geoslavery. IEEE Technology and Society Magazine, 22(1), 47–52.

    Article  Google Scholar 

  • Dredge, S. (2013). Waze and means: Google tipped to beat apple and facebook to \({\$}\)1.3bn acquisition. The Guardian.

    Google Scholar 

  • Duckham, M. (2012). Decentralized Spatial Computing, Foundations of Geosensor Networks. Berlin: Springer.

    Google Scholar 

  • Duckham, M., & Bennett, R. (2009). Ambient spatial intelligence. In B. Gottfried & H. Aghajan (Eds.), Behaviour Monitoring and Interpretation—BMI—Smart Environments. Ambient Intelligence and Smart Environments (Vol. 3, pp. 319–335). Amsterdam, NL: IOS Press.

    Google Scholar 

  • Duckham, M., Nittel, S., & Worboys, M. (2005). Monitoring dynamic spatial fields using responsive geosensor networks. In C. Shahabi & O. Boucelma (Eds.), ACM GIS (pp. 51–60). New York: ACM Press.

    Google Scholar 

  • Galton, A. (2004). Fields and objects in space, time, and space-time. Spatial Cognition and Computation, 4(1), 39–68.

    Article  MathSciNet  Google Scholar 

  • Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy: A vision of convergence. In F. Giannotti & D. Pedreschi (Eds.), Mobility, Data Mining and Privacy (pp. 1–11). Berlin: Springer.

    Chapter  Google Scholar 

  • Greenfield, A. (2006). Everyware: The dawning age of ubiquitous computing. Berkeley: New Riders Press.

    Google Scholar 

  • Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognition and Computation, 4(1), 69–103.

    Article  Google Scholar 

  • Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.

    Article  Google Scholar 

  • Grossglauser, M., & Vetterli, M. (2006). Locating mobile nodes with ease: Learning efficient routes from encounter histories alone. IEEE/ACM Transactions on Networking, 14(3), 457–469.

    Article  Google Scholar 

  • Kargupta, H., & Chan, P. (2000). Advances in distributed and parallel knowledge discovery. Menlo Park, CA: AAAI Press, the MIT Press.

    Google Scholar 

  • Kellerer, W., Bettstetter, C., Schwingenschlogl, C., Sties, P., & Steinberg, K. E. (2001). (Auto) mobile communication in a heterogeneous and converged world. IEEE Personal Communications, 8(6), 41–47.

    Article  Google Scholar 

  • Kim, S., Maciejewski, R., Ostmo, K., Delp, E. J., Collins, T. F., & Ebert, D. S. (2008). Mobile analytics for emergency response and training. Information Visualization, 7(1), 77–88.

    Article  Google Scholar 

  • Koehn, J., Nicol, S., McKenzie, J., Lieschke, J., Lyon, J., & Pomorin, K. (2008). Spatial ecology of an endangered native australian percichthyid fish, the trout cod maccullochella macquariensis. Endangered Species Research, 4(1–2), 219–225.

    Article  Google Scholar 

  • Kosch, T. Adler, C. J., Eichler, S. Schroth, C. & Strassberger, M. (2006). The scalability problem of vehicular ad hoc networks and how to solve it. Wireless Communications, IEEE, 13(5), 22–28.

    Google Scholar 

  • Laube, P., & Duckham, M. (2009). Decentralized spatial data mining for geosensor networks. In H. Miller & J. Han (Eds.), Geographic data mining and knowledge discovery (2nd ed., pp. 409–430). London: CRC Press.

    Google Scholar 

  • Laube, P., Duckham, M., & Croitoru, A. (2009). Distributed and mobile spatial computing. Computers, Environment and Urban Systems, 33(2), 77–78.

    Article  Google Scholar 

  • Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273–292. doi:10.1080/13658810903296630.

    Article  Google Scholar 

  • Laube, P., Duckham, M., & Wolle, T. (2008). Decentralized movement pattern detection amongst mobile geosensor nodes. In T. J. Cova, K. Beard, M. F. Goodchild, & A. U. Frank (Eds.), Geographic Information Science (pp. 199–216). Volume 5266 of Lecture Notes in Computer Science. Berlin: Springer. ISBN 978-3-540-87472-0.

    Google Scholar 

  • Laube, P., Duckham, M., Worboys, M., & Joyce, T. (2010). Decentralized spatial computing in urban environments. In B. Jiang & X. Yao (Eds.), Geospatial analysis and modelling of urban structure and dynamics (pp. 53–74). Berlin Heidelberg: GeoJournal Library, Springer.

    Chapter  Google Scholar 

  • Lynch, N. (1996). Distributed algorithms. San Mateo, CA: Morgan Kaufmann.

    MATH  Google Scholar 

  • McLurkin, J. (2008). Analysis and implementation of distributed algorithms for multi-robot systems (PhD thesis, Massachusetts Institute of Technology).

    Google Scholar 

  • Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7), 5664–5678.

    Article  Google Scholar 

  • Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M. J., Goldin, D., Howard, A., et al. (2004). Report from the first workshop on geo sensor networks. ACM SIGMOD Record, 33(1), 141–144.

    Google Scholar 

  • Nouwt, S. (2008). Reasonable expectations of geo-privacy? SCRIPTed, 5(2), 375–403.

    Article  Google Scholar 

  • Rule, J., McAdam, D., Stearn, L., & Uglow, D. (1980). Politics of privacy. New York: New American Library.

    Google Scholar 

  • Smith, P., Hutchison, D., Sterbenz, J. P. G., Schöller, M., Fessi, A., Karaliopoulos, M., et al. (2011). Network resilience: A systematic approach. IEEE Communications Magazine, 49(7), 88–97.

    Article  Google Scholar 

  • Uteck, A. (2009). Ubiquitous computing and spatial privacy, anonymity, privacy and identity in a networked society. In I. Kerr, V. Steeves & C. Lucock, (Eds.), Lessons from the identity trail (pp. 83–102). Oxford: Oxford University Press.

    Google Scholar 

  • Werner-Allen, G., Lorinez, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.

    Article  Google Scholar 

  • Wilensky, U. (1999). Netlogo (and netlogo user manual).

    Google Scholar 

  • Winter, S., & Nittel, S. (2006). Ad hoc shared-ride trip planning by mobile geosensor networks. International Journal of Geographical Information Science, 20(8), 899–916.

    Article  Google Scholar 

  • Worboys, M., & Duckham, M. (2004). GIS: A computing perspective (2nd ed.). New York: CRC Press.

    Google Scholar 

  • Wu, Y. H., Guan, L. J., & Winter, S. (2007). Peer-to-peer shared ride systems. In S. Nittel, A. Labrinidis, & A. Stefanidis (Eds.), Advances in geosensor networks (Vol. 4540). Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  • Zhao, F., & Guibas, L. J. (2004). Wireless sensor networks: An information processing approach. San Francisco, CA: Morgan Kaufmann Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Laube .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Laube, P. (2014). Decentralized Movement Analysis. In: Computational Movement Analysis. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-10268-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10268-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10267-2

  • Online ISBN: 978-3-319-10268-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics