Abstract
This work presents a combination of a teach-and-replay visual navigation and Monte Carlo localization methods. It improves a reliable teach-and-replay navigation method by replacing its dependency on precise dead-reckoning by introducing Monte Carlo localization to determine robot position along the learned path. In consequence, the navigation method becomes robust to dead-reckoning errors, can be started from at any point in the map and can deal with the ‘kidnapped robot’ problem. Furthermore, the robot is localized with MCL only along the taught path, i.e. in one dimension, which does not require a high number of particles and significantly reduces the computational cost. Thus, the combination of MCL and teach-and-replay navigation mitigates the disadvantages of both methods. The method was tested using a P3-AT ground robot and a Parrot AR.Drone aerial robot over a long indoor corridor. Experiments show the validity of the approach and establish a solid base for continuing this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)
Klein, G., Murray, D.: Parallel Tracking and Mapping on a camera phone. In: 2009 8th IEEE International Symposium on Mixed and Augmented Reality (2009)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2003)
Chen, Z., Birchfield, S.: Qualitative vision-based mobile robot navigation. In: Proceedings International Conference on Robotics and Automation, ICRA, pp. 2686–2692. IEEE (2006)
Zhang, A.M., Kleeman, L.: Robust appearance based visual route following for navigation in large-scale outdoor environments. The International Journal of Robotics Research 28(3), 331–356 (2009)
Krajník, T., Faigl, J., Vonásek, V., Kosnar, K., Kulich, M., Preucil, L.: Simple yet stable bearing-only navigation. Journal of Field Robotics 27(5), 511–533 (2010)
Krajnik, T., Nitsche, M., Pedre, S., Preucil, L.: A simple visual navigation system for an UAV. In: Systems, Signals and Devices, pp. 1–6 (2012)
Furgale, P., Barfoot, T.: Visual teach and repeat for longrange rover autonomy. Journal of Field Robotics (2006), 1–27 (2010)
Siagian, C., Chang, C.K., Itti, L.: Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision. Journal of Field Robotics 31(3), 408–440 (2014)
Krajník, T., Pedre, S., Přeučil, L.: Monocular Navigation System for Long-Term Autonomy. In: Proceedings of the International Conference on Advanced Robotics, Montevideo. IEEE (2013)
Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation, vol. 2 (1999)
Niu, M., Mao, X., Liang, J., Niu, B.: Object tracking based on extended surf and particle filter. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 649–657. Springer, Heidelberg (2013)
Li, R.: An Object Tracking Algorithm Based on Global SURF Feature. Journal of Information and Computational Science 10(7), 2159–2167 (2013)
Wolf, J., Burgard, W., Burkhardt, H.: Robust vision-based localization by combining an image-retrieval system with monte carlo localization. Transactions on Robotics 21(2), 208–216 (2005)
Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Visual teach and repeat, repeat, repeat: Iterative Learning Control to improve mobile robot path tracking in challenging outdoor environments. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 176–181 (November 2013)
Ok, K., Ta, D., Dellaert, F.: Vistas and wall-floor intersection features-enabling autonomous flight in man-made environments. In: Workshop on Visual Control of Mobile Robots (ViCoMoR): IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Augustine, M., Ortmeier, F., Mair, E., Burschka, D., Stelzer, A., Suppa, M.: Landmark-Tree map: A biologically inspired topological map for long-distance robot navigation. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 128–135 (2012)
Ni, K., Kannan, A., Criminisi, A., Winn, J.: Epitomic location recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2158–2167 (2009)
Cadena, C., McDonald, J., Leonard, J., Neira, J.: Place recognition using near and far visual information. In: Proceedings of the 18th IFAC World Congress (2011)
Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route representation. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 1, pp. 83–88 (April 1996)
Faigl, J., Krajník, T., Vonásek, V., Preucil, L.: Surveillance planning with localization uncertainty for uavs. In: 3rd Israeli Conference on Robotics, Ariel (2010)
Krajník, T., Nitsche, M., Faigl, J., Vank, P., Saska, M., Peuil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. Journal of Intelligent and Robotic Systems, 1–24 (2014)
Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128, 99–141 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nitsche, M., Pire, T., Krajník, T., Kulich, M., Mejail, M. (2014). Monte Carlo Localization for Teach-and-Repeat Feature-Based Navigation. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-10401-0_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10400-3
Online ISBN: 978-3-319-10401-0
eBook Packages: Computer ScienceComputer Science (R0)