Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monte Carlo Localization for Teach-and-Repeat Feature-Based Navigation

  • Conference paper
Advances in Autonomous Robotics Systems (TAROS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8717))

Included in the following conference series:

Abstract

This work presents a combination of a teach-and-replay visual navigation and Monte Carlo localization methods. It improves a reliable teach-and-replay navigation method by replacing its dependency on precise dead-reckoning by introducing Monte Carlo localization to determine robot position along the learned path. In consequence, the navigation method becomes robust to dead-reckoning errors, can be started from at any point in the map and can deal with the ‘kidnapped robot’ problem. Furthermore, the robot is localized with MCL only along the taught path, i.e. in one dimension, which does not require a high number of particles and significantly reduces the computational cost. Thus, the combination of MCL and teach-and-replay navigation mitigates the disadvantages of both methods. The method was tested using a P3-AT ground robot and a Parrot AR.Drone aerial robot over a long indoor corridor. Experiments show the validity of the approach and establish a solid base for continuing this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)

    Google Scholar 

  2. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)

    Article  Google Scholar 

  3. Klein, G., Murray, D.: Parallel Tracking and Mapping on a camera phone. In: 2009 8th IEEE International Symposium on Mixed and Augmented Reality (2009)

    Google Scholar 

  4. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2003)

    Google Scholar 

  5. Chen, Z., Birchfield, S.: Qualitative vision-based mobile robot navigation. In: Proceedings International Conference on Robotics and Automation, ICRA, pp. 2686–2692. IEEE (2006)

    Google Scholar 

  6. Zhang, A.M., Kleeman, L.: Robust appearance based visual route following for navigation in large-scale outdoor environments. The International Journal of Robotics Research 28(3), 331–356 (2009)

    Article  Google Scholar 

  7. Krajník, T., Faigl, J., Vonásek, V., Kosnar, K., Kulich, M., Preucil, L.: Simple yet stable bearing-only navigation. Journal of Field Robotics 27(5), 511–533 (2010)

    Article  Google Scholar 

  8. Krajnik, T., Nitsche, M., Pedre, S., Preucil, L.: A simple visual navigation system for an UAV. In: Systems, Signals and Devices, pp. 1–6 (2012)

    Google Scholar 

  9. Furgale, P., Barfoot, T.: Visual teach and repeat for longrange rover autonomy. Journal of Field Robotics (2006), 1–27 (2010)

    Google Scholar 

  10. Siagian, C., Chang, C.K., Itti, L.: Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision. Journal of Field Robotics 31(3), 408–440 (2014)

    Article  Google Scholar 

  11. Krajník, T., Pedre, S., Přeučil, L.: Monocular Navigation System for Long-Term Autonomy. In: Proceedings of the International Conference on Advanced Robotics, Montevideo. IEEE (2013)

    Google Scholar 

  12. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation, vol. 2 (1999)

    Google Scholar 

  13. Niu, M., Mao, X., Liang, J., Niu, B.: Object tracking based on extended surf and particle filter. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 649–657. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Li, R.: An Object Tracking Algorithm Based on Global SURF Feature. Journal of Information and Computational Science 10(7), 2159–2167 (2013)

    Article  Google Scholar 

  15. Wolf, J., Burgard, W., Burkhardt, H.: Robust vision-based localization by combining an image-retrieval system with monte carlo localization. Transactions on Robotics 21(2), 208–216 (2005)

    Article  Google Scholar 

  16. Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Visual teach and repeat, repeat, repeat: Iterative Learning Control to improve mobile robot path tracking in challenging outdoor environments. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 176–181 (November 2013)

    Google Scholar 

  17. Ok, K., Ta, D., Dellaert, F.: Vistas and wall-floor intersection features-enabling autonomous flight in man-made environments. In: Workshop on Visual Control of Mobile Robots (ViCoMoR): IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  18. Augustine, M., Ortmeier, F., Mair, E., Burschka, D., Stelzer, A., Suppa, M.: Landmark-Tree map: A biologically inspired topological map for long-distance robot navigation. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 128–135 (2012)

    Google Scholar 

  19. Ni, K., Kannan, A., Criminisi, A., Winn, J.: Epitomic location recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2158–2167 (2009)

    Article  Google Scholar 

  20. Cadena, C., McDonald, J., Leonard, J., Neira, J.: Place recognition using near and far visual information. In: Proceedings of the 18th IFAC World Congress (2011)

    Google Scholar 

  21. Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route representation. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 1, pp. 83–88 (April 1996)

    Google Scholar 

  22. Faigl, J., Krajník, T., Vonásek, V., Preucil, L.: Surveillance planning with localization uncertainty for uavs. In: 3rd Israeli Conference on Robotics, Ariel (2010)

    Google Scholar 

  23. Krajník, T., Nitsche, M., Faigl, J., Vank, P., Saska, M., Peuil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. Journal of Intelligent and Robotic Systems, 1–24 (2014)

    Google Scholar 

  24. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128, 99–141 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nitsche, M., Pire, T., Krajník, T., Kulich, M., Mejail, M. (2014). Monte Carlo Localization for Teach-and-Repeat Feature-Based Navigation. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10401-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10400-3

  • Online ISBN: 978-3-319-10401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics