Abstract
In this paper, we propose a new method for simultaneously segmenting brain scans of glioma patients and registering these scans to a normal atlas. Performing joint segmentation and registration for brain tumors is very challenging when tumors include multifocal masses and have complex shapes with heterogeneous textures. Our approach grows tumors for each mass from multiple seed points using a tumor growth model and modifies a normal atlas into one with tumors and edema using the combined results of grown tumors. We also generate a tumor shape prior via the random walk with restart, utilizing multiple tumor seeds as initial foreground information. We then incorporate this shape prior into an EM framework which estimates the mapping between the modified atlas and the scans, posteriors for each tissue labels, and the tumor growth model parameters. We apply our method to the BRATS 2013 leaderboard dataset to evaluate segmentation performance. Our method shows the best performance among all participants.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Giannopoulos, S., Kyritsis, A.P.: Diagnosis and Management of Multifocal Gliomas. Oncology 79(3-4), 306–312 (2010)
Gooya, A., Pohl, K.M., Billelo, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma Image Segmentation and Registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)
Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)
Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous Parallel Pattern Search for Nonlinear Optimization. SIAM J. Sci. Comput. 23(1), 134–156 (2001)
Kim, T.-H., Lee, K.M., Lee, S.U.: Generative Image Segmentation Using Random Walks with Restart. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 264–275. Springer, Heidelberg (2008)
Kwon, D., Niethammer, M., Akbari, H., Bilello, M., Davatzikos, C., Pohl, K.M.: PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration. IEEE Trans. Med. Imaging 33(3), 651–667 (2014)
Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated Model-Based Bias Field Correction of MR Images of the Brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)
Louis, D.N.: Molecular Pathology of Malignant Gliomas. Annu. Rev. Pathol. Mech. Dis. 1, 97–117 (2006)
Menze, B.H., et al.: The BRATS Online Tools - Multimodal Brain Tumor Segmentation, BRATS (2013), http://www.virtualskeleton.ch/BRATS/Start2013
Menze, B.H., et al.: The Multimodal Brain Tumor Image Segmentation Benchmark, BRATS (2014), http://hal.inria.fr/hal-00935640
Morris, C.N.: Parametric Empirical Bayes Inference: Theory and Applications. J. Am. Statist. Assoc. 78(381), 47–55 (1983)
Parisot, S., Wells, W., Chemouny, S., Duffau, H., Paragios, N.: Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med. Image Anal. 18(4), 647–659 (2014)
Pohl, K.M., Fisher, J., Grimson, W.E.L., Kikinis, R., Wells, W.M.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)
Sanai, N., Berger, M.S.: Glioma Extent of Resection and Its Impact on Patient Outcome. Neurosurgery 62(4), 753–766 (2008)
Verma, R., Zacharaki, E.I., Ou, Y., Cai, H., Chawla, S., Lee, S.K., Melhem, E.R., Wolf, R., Davatzikos, C.: Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Acad. Radiol. 15(8), 966–977 (2008)
Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kwon, D., Shinohara, R.T., Akbari, H., Davatzikos, C. (2014). Combining Generative Models for Multifocal Glioma Segmentation and Registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8673. Springer, Cham. https://doi.org/10.1007/978-3-319-10404-1_95
Download citation
DOI: https://doi.org/10.1007/978-3-319-10404-1_95
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10403-4
Online ISBN: 978-3-319-10404-1
eBook Packages: Computer ScienceComputer Science (R0)