Abstract
The clothing we wear and our identities are closely tied, revealing to the world clues about our wealth, occupation, and socio-identity. In this paper we examine questions related to what our clothing reveals about our personal style. We first design an online competitive Style Rating Game called Hipster Wars to crowd source reliable human judgments of style. We use this game to collect a new dataset of clothing outfits with associated style ratings for 5 style categories: hipster, bohemian, pinup, preppy, and goth. Next, we train models for between-class and within-class classification of styles. Finally, we explore methods to identify clothing elements that are generally discriminative for a style, and methods for identifying items in a particular outfit that may indicate a style.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bossard, L., Dantone, M., Leistner, C., Wengert, C., Quack, T., Van Gool, L.: Apparel classification with style. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part IV. LNCS, vol. 7727, pp. 321–335. Springer, Heidelberg (2013)
Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3D human pose annotations. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1365–1372. IEEE (2009)
Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010)
Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 609–623. Springer, Heidelberg (2012)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)
Deng, J., Krause, J., Fei-Fei, L.: Fine-grained crowdsourcing for fine-grained recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2013)
Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes paris look like paris? ACM Transactions on Graphics (SIGGRAPH) 31(4) (2012)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research (2008)
Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS (2007)
Herbrich, R., Minka, T., Graepel, T.: Trueskill(tm): A bayesian skill rating system. In: Advances in Neural Information Processing Systems, pp. 569–576 (2007)
Kalantidis, Y., Kennedy, L., Li, L.J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 105–112. ACM (2013)
Kovashka, A., Grauman, K.: Attribute pivots for guiding relevance feedback in image search. In: ICCV (2013)
Kovashka, A., Parikh, D., Grauman, K.: Whittlesearch: Image search with relative attribute feedback. In: CVPR, pp. 2973–2980. IEEE (2012)
Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: ICCV (2009)
Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: A computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable visual attributes for face verification and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI (October 2011)
Kwak, I.S., Murillo, A.C., Belhumeur, P., Belongie, S., Kriegman, D.: From bikers to surfers: Visual recognition of urban tribes. In: British Machine Vision Conference (BMVC), Bristol (September 2013)
Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR (2009)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2006)
Lee, Y.J., Efros, A.A., Hebert, M.: Style-aware mid-level representation for discovering visual connections in space and time. In: ICCV (2013)
Li, L.-J., Su, H., Lim, Y., Fei-Fei, L.: Objects as attributes for scene classification. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part I. LNCS, vol. 6553, pp. 57–69. Springer, Heidelberg (2010)
Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., Yan, S.: Hi, magic closet, tell me what to wear? In: ACM International Conference on Multimedia, pp. 619–628. ACM (2012)
Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In: CVPR, pp. 3330–3337 (2012)
Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)
Murillo, A.C., Kwak, I.S., Bourdev, L., Kriegman, D., Belongie, S.: Urban tribes: Analyzing group photos from a social perspective. In: CVPR Workshop on Socially Intelligent Surveillance and Monitoring (SISM), Providence, RI (June 2012)
Parikh, D., Grauman, K.: Interactively building a discriminative vocabulary of nameable attributes. In: CVPR (2011)
Parikh, D., Grauman, K.: Relative attributes. In: ICCV (2011)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1-2), 61–81 (2005), http://dx.doi.org/10.1007/s11263-005-4635-4
Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 319–326. ACM (2004)
Von Ahn, L., Liu, R., Blum, M.: Peekaboom: a game for locating objects in images. In: Conference on Human Factors in Computing Systems, CHI (2006)
Wang, J., Yang, J., Yu, K., Huang, T., Lv, F., Gong, Y.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)
Wang, Y., Mori, G.: A discriminative latent model of object classes and attributes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 155–168. Springer, Heidelberg (2010)
Wu, S.: Online-retail spending at $200 billion annually and growing. Wall Street Journal Digits Blog (February 2012)
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)
Yamaguchi, K., Kiapour, M.H., Berg, T.L.: Parsing clothing in fashion photographs. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), pp. 3570–3577. IEEE Computer Society, Washington, DC (2012), http://dl.acm.org/citation.cfm?id=2354409.2355126
Yamaguchi, K., Kiapour, M.H., Berg, T.L.: Paper doll parsing: Retrieving similar styles to parse clothing items. In: 2013 IEEE International Conference on Computer Vision, ICCV (2013)
Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR, pp. 1385–1392 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kiapour, M.H., Yamaguchi, K., Berg, A.C., Berg, T.L. (2014). Hipster Wars: Discovering Elements of Fashion Styles. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8689. Springer, Cham. https://doi.org/10.1007/978-3-319-10590-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-10590-1_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10589-5
Online ISBN: 978-3-319-10590-1
eBook Packages: Computer ScienceComputer Science (R0)