Abstract
The extension of conventional clustering to hypergraph clustering, which involves higher order similarities instead of pairwise similarities, is increasingly gaining attention in computer vision. This is due to the fact that many grouping problems require an affinity measure that must involve a subset of data of size more than two, i.e., a hyperedge. Almost all previous works, however, have considered the smallest possible hyperedge size, due to a lack of study into the potential benefits of large hyperedges and effective algorithms to generate them. In this paper, we show that large hyperedges are better from both theoretical and empirical standpoints. We then propose a novel guided sampling strategy for large hyperedges, based on the concept of random cluster models. Our method can generate pure large hyperedges that significantly improve grouping accuracy without exponential increases in sampling costs. In the important applications of face clustering and motion segmentation, our method demonstrates substantially better accuracy and efficiency.
Chapter PDF
Similar content being viewed by others
References
Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: ICML (2006)
Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: CVPR (2005)
Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.: Beyond pairwise clustering. In: CVPR (2005)
Chen, G., Lerman, G.: Spectral curvature clustering (scc). IJCV 81(3), 317–330 (2009)
Liu, H., Latecki, L., Yan, S.: Robust clustering as ensembles of affinity relations. In: NIPS (2010)
Liu, H., Yan, S.: Efficient structure detection via random consensus graph. In: CVPR (2012)
Ochs, P., Brox, T.: Higher order motion models and spectral clustering. In: CVPR (2012)
Jain, S., Govindu, V.M.: Efficient higher-order clustering on the grassmann manifold. In: ICCV (2013)
MacKay, D.J.C. (extra) The Swendsen-Wang method. In: Information Theory, Inference, and Learning Algorithms. Cambridge University Press (2003)
Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. In: CVPR (2012)
Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: A survey. Integration: The VLSI Journal 19(1–2), 1–81 (1995)
Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classification, and embedding. In: NIPS (2006)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 888–905 (2000)
Bulo’, S.R., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE TPAMI 35(6), 1312–1327 (2013)
Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23(6), 643–660 (2001)
Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR (2007)
Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)
Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)
Chin, T.-J., Yu, J., Suter, D.: Accelerated hypothesis generation for multi-structure robust fitting. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 533–546. Springer, Heidelberg (2010)
Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). IEEE TPAMI 27(12), 1945–1959 (2005)
Zhang, T., Szlam, A., Wang, Y., Lerman, G.: Hybrid linear modeling via local best-fit flats. IJCV 100(3), 217–240 (2012)
Ma, Y., Derksen, H., Hong, W., Wright, J.: Segmentation of multivariate mixed data via lossy data coding and compression. IEEE TPAMI 29(9), 1546–1562 (2007)
Yan, J., Pollefeys, M.: A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Part IV. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006)
Shi, F., Zhou, Z., Xiao, J., Wu, W.: Robust trajectory clustering for motion segmentation. In: ICCV (2013)
Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Purkait, P., Chin, TJ., Ackermann, H., Suter, D. (2014). Clustering with Hypergraphs: The Case for Large Hyperedges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8692. Springer, Cham. https://doi.org/10.1007/978-3-319-10593-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-10593-2_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10592-5
Online ISBN: 978-3-319-10593-2
eBook Packages: Computer ScienceComputer Science (R0)