Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High-Order Asymptotic-Preserving Projective Integration Schemes for Kinetic Equations

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

Abstract

We study a projective integration scheme for a kinetic equation in both the diffusive and hydrodynamic scaling, on which a limiting diffusion or advection equation exists. The scheme first takes a few small steps with a simple, explicit method, such as a spatial centered flux/forward Euler time integration, and subsequently projects the results forward in time over a large, macroscopic time step. With an appropriate choice of the inner step size, the time-step restriction on the outer time step is similar to the stability condition for the limiting equation, whereas the required number of inner steps does not depend on the small-scale parameter. The presented method is asymptotic-preserving, in the sense that the method converges to a standard finite volume scheme for the limiting equation in the limit of vanishing small parameter. We show how to obtain arbitrary-order, general, explicit schemes for kinetic equations as well as for systems of nonlinear hyperbolic conservation laws, and provide numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Aregba-Driollet, R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. U. Ascher, S. Ruuth, R. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Boscarino, L. Pareschi, G. Russo, Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Dimarco, L. Pareschi, Asymptotic preserving implicit-explicit Runge–Kutta methods for nonlinear kinetic equations. SIAM J. Numer. Anal. 51(2), 1064–1087 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Filbet, S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46(2), 204–224 (2010)

    Article  MathSciNet  Google Scholar 

  6. F. Filbet, S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. C.W. Gear, I. Kevrekidis, Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Giuseppe, A. Anile, Moment equations for charged particles: global existence results, in Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, Boston, 2004), pp. 59–80

    Google Scholar 

  9. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 1–24 (1999)

    Article  MathSciNet  Google Scholar 

  10. P. Lafitte, A. Lejon, G. Samaey, A higher order asymptotic-preserving integration scheme for kinetic equations using projective integration, pp. 1–25. http://arxiv.org/abs/1404.6104

  11. P. Lafitte, W. Melis, G. Samaey, A relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. (submitted)

    Google Scholar 

  12. P. Lafitte, G. Samaey, Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 34(2), A579–A602 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Sommeijer, Increasing the real stability boundary of explicit methods. Comput. Math. Appl. 19(6), 37–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelies Lejon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lafitte, P., Lejon, A., Melis, W., Roose, D., Samaey, G. (2015). High-Order Asymptotic-Preserving Projective Integration Schemes for Kinetic Equations. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_38

Download citation

Publish with us

Policies and ethics