Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FMMTL: FMM Template Library A Generalized Framework for Kernel Matrices

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

  • 3332 Accesses

Abstract

In response to two decades of development in structured dense matrix algorithms and a vast number of research codes, we present designs and progress towards a codebase that is abstracted over the primary domains of research. In the domain of mathematics, this includes the development of interaction kernels and their low-rank expansions. In the domain of high performance computing, this includes the optimized construction, traversal, and scheduling algorithms for the appropriate operations. We present a versatile system that can encompass the design decisions made over a decade of research while providing an abstracted, intuitive, and usable front-end that can integrated into existing linear algebra libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, T. Takahashi, Pipelining the Fast Multipole Method over a Runtime System. Research Report RR-7981, INRIA, May 2012

    Google Scholar 

  2. J. Bédorf, E. Gaburov, S. Portegies Zwart, A sparse octree gravitational n-body code that runs entirely on the GPU processor. J. Comput. Phys. 231(7), 2825–2839 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. H.A. Boateng, R. Krasny, Comparison of treecodes for computing electrostatic potentials in charged particle systems with disjoint targets and sources. J. Comput. Chem. 34(25), 2159–2167 (2013)

    Article  Google Scholar 

  4. C. Cecka, E. Darve, Fourier-based fast multipole method for the helmholtz equation. SIAM J. Sci. Comput. 35(1), A79–A103 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155(2), 468–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Fong, E. Darve, The black-box fast multipole method. J. Comput. Phys. 228(23), 8712–8725 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Kurzak, B.M. Pettitt, Fast multipole methods for particle dynamics. Mol. Simul. 32(10–11), 775–790 (2006)

    Article  MATH  Google Scholar 

  8. H. Ltaief, R. Yokota, Data-driven execution of fast multipole methods. Concurr. Comput.: Pract. Experience, pp. n/a–n/a (2013)

    Google Scholar 

  9. J.K. Salmon, M.S. Warren, Skeletons from the treecode closet. J. Comput. Phys. 111(1), 136–155 (1994)

    Article  MATH  Google Scholar 

  10. T. Takahashi, C. Cecka, W. Fong, E. Darve, Optimizing the multipole-to-local operator in the fast multipole method for graphical processing units. Int. J. Numer. Methods Eng. 89(1), 105–133 (2012)

    Article  MATH  Google Scholar 

  11. L. Ying, A kernel-independent fast multpole algorithm for radial basis functions. J. Comput. Phys. 213, 451–457 (2006)

    Article  MATH  Google Scholar 

  12. L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Yokota, An fmm based on dual tree traversal for many-core architectures. J. Algorithms Comput. Technol. 7, 301–324 (2013)

    Article  Google Scholar 

  14. R. Yokota, L.A. Barba, Hierarchical n-body simulations with autotuning for heterogeneous systems. Comput. Sci. Eng. 14(3), 30–39 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris Cecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cecka, C., Layton, S. (2015). FMMTL: FMM Template Library A Generalized Framework for Kernel Matrices. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_60

Download citation

Publish with us

Policies and ethics