Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Pair Uninorm-Implication in the Morphological Gradient

  • Conference paper
Computational Intelligence (IJCCI 2012)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 577))

Included in the following conference series:

Abstract

In this paper, the fuzzy edge detector from the fuzzy mathematical morphology based on conjunctive uninorms is deeply analysed in order to improve its performance. Since the edge detector is based on a conjunctive uninorm and a fuzzy implication, several different pairs of these operators are considered with the aim of determining which is the most competitive one. The comparison is performed using an objective edge detection performance measure, the so-called Pratt’s figure of merit. In addition, a statistical analysis is carried out to study the relationship between the different configurations and establish a classification of the uninorms and implications considered in this paper according to the performance of their respective morphological gradient. Both the objective measure and the statistical analysis conclude that the idempotent uninorm obtained using the classical negation, and its residual implication is the best configuration in this framework, although some other configurations can also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baczyński, M., Jayaram, B.: Fuzzy Implications. STUDFUZZ, vol. 231. Springer, Heidelberg (2008)

    Google Scholar 

  2. Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognition 28, 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical ROC curves. In: Computer Vision and Pattern Recognition, vol. 1, pp. 354–359 (1999)

    Google Scholar 

  4. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems 160(13), 1819–1840 (2009)

    Article  MathSciNet  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  6. De Baets, B.: Fuzzy morphology: A logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–68. Kluwer Academic Publishers, Norwell (1997)

    Google Scholar 

  7. De Baets, B.: Generalized idempotence in fuzzy mathematical morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. STUDFUZZ, vol. 52, ch. 2, pp. 58–75. Physica-Verlag, New York (2000)

    Chapter  Google Scholar 

  8. Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Systems 5, 411–427 (1997)

    Article  MathSciNet  Google Scholar 

  9. González-Hidalgo, M., Massanet, S., Mir, A.: Determining the best pair of t-norm and implication in the morphological gradient. In: Proceedings of XVI Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF), Valladolid, Spain, pp. 510–515 (2012) (in Spanish)

    Google Scholar 

  10. González-Hidalgo, M., Massanet, S., Torrens, J.: Discrete t-norms in a fuzzy mathematical morphology: Algebraic properties and experimental results. In: Proceedings of WCCI-FUZZ-IEEE, Barcelona, Spain, pp. 1194–1201 (2010)

    Google Scholar 

  11. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Edge-images using a uninorm-based fuzzy mathematical morphology: Opening and closing. In: Tavares, J., Jorge, N. (eds.) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol. 13, ch. 8, pp. 137–157. Springer, Netherlands (2009)

    Chapter  Google Scholar 

  12. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Image analysis applications of morphological operators based on uninorms. In: Proceedings of the IFSA-EUSFLAT 2009 Conference, Lisbon, Portugal, pp. 630–635 (2009)

    Google Scholar 

  13. Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis, 3rd edn. Springer (2012)

    Google Scholar 

  14. Klement, E., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, London (2000)

    Google Scholar 

  15. Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia (2012), http://www.csse.uwa.edu.au/~pk/research/matlabfns/

  16. Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Information Sciences 181(11), 2111–2127 (2011)

    Article  MathSciNet  Google Scholar 

  17. Medina-Carnicer, R., Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognition 44(6), 1201–1211 (2011)

    Article  Google Scholar 

  18. Nachtegael, M., Kerre, E.: Classical and fuzzy approaches towards mathematical morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. STUDFUZZ, vol. 52, ch. 1, pp. 3–57. Physica-Verlag, New York (2000)

    Chapter  Google Scholar 

  19. Papari, G., Petkov, N.: Edge and line oriented contour detection: State of the art. Image and Vision Computing 29(2-3), 79–103 (2011)

    Article  Google Scholar 

  20. Pratt, W.K.: Digital Image Processing, 4th edn. Wiley-Interscience (2007)

    Google Scholar 

  21. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012)

    Google Scholar 

  22. Serra, J.: Image analysis and mathematical morphology, vols. 1, 2. Academic Press, London (1982, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel González-Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D. (2015). On the Pair Uninorm-Implication in the Morphological Gradient. In: Madani, K., Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2012. Studies in Computational Intelligence, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-11271-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11271-8_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11270-1

  • Online ISBN: 978-3-319-11271-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics