Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-dimensional Fuzzy Modeling with Incomplete Fuzzy Rule Base and Radial Basis Activation Functions

  • Conference paper
Intelligent Systems'2014

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 322))

  • 1519 Accesses

Abstract

A new type of a fuzzy model is proposed in this paper. It uses a reduced number of fuzzy rules with respective radial basis activation functions. The optimal number of the rules is defined experimentally and their locations are obtained by clustering or by PSO optimization procedure. All other parameters are also optimized in order to produce the best model. The obtained model is able to work with sparse data in the multidimensional experimental space. As a proof a synthetic example, as well as a real example of a 5-dimensional sparse data have been used. The results obtained show that the PSO optimization of the fuzzy rule locations is a better approach than the clustering algorithm, which utilizes the distribution of the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient Implementation of the Fuzzy c-Means Clustering Algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(2) (1986)

    Google Scholar 

  2. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)

    Article  Google Scholar 

  3. Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  4. Fogel, L., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, New York (1996)

    Google Scholar 

  5. Guo, P., Chen, C.L., Lyu, M.R.: Cluster Number Selection for a Small Set of Samples Using the Bayesian Ying-Yang Model. IEEE Trans. Neural Networks. 13(3), 757–763 (2002)

    Article  Google Scholar 

  6. Ismail, M.A., Selim, S.Z.: Fuzzy c-means: Optimality of solutions and effective termination of the algorithm. Pattern Recognition 19, 481–485 (1986)

    Article  MATH  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Chapter  Google Scholar 

  8. Orr, M.J.L.: Regularisation in the Selection of Radial Basis Function Centres. Neural Computation 7(3), 606–623 (1995)

    Article  Google Scholar 

  9. Pal, N.R., Bezdek, J.C.: On Cluster Validity for the Fuzzy C-Means Model. IEEE Trans. Fuzzy Systems 3(3), 370–379 (1995)

    Article  Google Scholar 

  10. Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27, 787–795 (1997)

    Article  Google Scholar 

  11. Kacprzyk, J., Fedrizzi, M.: Developing a fuzzy logic controller in case of sparse testimonies. Int. Journal of Approximate Reasoning 12(3/4), 221–236 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chorukova, E., Simeonov, I.: Monitoring System of Pilot Scale Bioreactor for Anaerobic Digestion of Organic Wastes. In: Proc. of the Int. Symposium on Control of Industrial and Energy Systems, Bankja, Bulgaria, November 7-8 (2013) (in Bulgarian)

    Google Scholar 

  13. Powell, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Algorithms for Approximation, pp. 143–167. Clarendon Press, Oxford (1987)

    Google Scholar 

  14. Roger Jang, J.S., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks 4(1), 156–159 (1993)

    Article  Google Scholar 

  15. Schilling, R.J., Carroll, J.J.: Approximation of Nonlinear Systems with Radial Basis Function Neural Networks. IEEE Trans. on Neural Networks 12(1) (2001)

    Google Scholar 

  16. Das, S., Abraham, A.: Automatic Clustering Using An Improved Differential Evolution Algorithm. IEEE Transactions on Systems, Man, And Cybernetics—Part A: Systems And Humans 38(1), 218–237 (2008)

    Article  Google Scholar 

  17. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  18. Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognit. Lett. 25, 1123–1132 (2004)

    Article  Google Scholar 

  19. Webb, A., Shannon, S.: Shape-adaptive radial basis functions. IEEE Trans. Neural Networks 9 (1998)

    Google Scholar 

  20. Xie, X.L., Beni, G.A.: Validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 3, 841–846 (1991)

    Article  Google Scholar 

  21. Xu, C., Shin, Y.C.: Intelligent Systems Modeling, Optimization, and Control (Automation and Control Engineering Series) Summary. CRC Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gancho Vachkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vachkov, G., Christova, N., Valova, M. (2015). Multi-dimensional Fuzzy Modeling with Incomplete Fuzzy Rule Base and Radial Basis Activation Functions. In: Angelov, P., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-319-11313-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11313-5_63

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11312-8

  • Online ISBN: 978-3-319-11313-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics