Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Two-Level Approach to Maximum Entropy Model Computation for Relational Probabilistic Logic Based on Weighted Conditional Impacts

  • Conference paper
Scalable Uncertainty Management (SUM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8720))

Included in the following conference series:

Abstract

The principle of maximum entropy allows to define the semantics of a knowledge base consisting of a set of probabilistic relational conditionals by a unique model having maximum entropy. Using the concept of a conditional structure of a world, we define the notion of weighted conditional impacts and present a two-level approach for maximum entropy model computation based on them. Once the weighted conditional impact of a knowledge base has been determined, a generalized iterative scaling algorithm is used that fully abstracts from concrete worlds. The weighted conditional impact may be reused when only the quantitative aspects of the knowledge base are changed. As a further extension of previous work, also deterministic conditionals may be present in the knowledge base, and a special treatment of such conditionals reduces the problem size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, E.: The Logic of Conditionals. D. Reidel, Dordrecht (1975)

    Google Scholar 

  2. Beierle, C., Finthammer, M., Kern-Isberner, G., Thimm, M.: Evaluation and comparison criteria for approaches to probabilistic relational knowledge representation. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 63–74. Springer, Heidelberg (2011)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Google Scholar 

  4. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation semantics of relational conditionals. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 49–60. Springer, Heidelberg (2012)

    Google Scholar 

  6. Finthammer, M., Thimm, M.: An integrated development environment for probabilistic relational reasoning. Logic Journal of the IGPL 20(5), 831–871 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fisseler, J.: Learning and Modeling with Probabilistic Conditional Logic, Dissertations in Artificial Intelligence, vol. 328. IOS Press, Amsterdam (2010)

    Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  9. Halpern, J.: Reasoning About Uncertainty. MIT Press (2005)

    Google Scholar 

  10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087, p. 27. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1-2), 139–202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals. In: ECAI 2012, pp. 456–461. IOS Press (2012)

    Google Scholar 

  13. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Proc. of KR 2010, pp. 382–392. AAAI Press (May 2010)

    Google Scholar 

  14. Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI 2008, pp. 1062–1068. AAAI Press (2008)

    Google Scholar 

  15. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nute, D., Cross, C.: Conditional logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 1–98. Kluwer Academic Publishers (2002)

    Google Scholar 

  17. Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge University Press (1994)

    Google Scholar 

  18. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  19. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI 2005, pp. 1319–1325. Professional Book Center (2005)

    Google Scholar 

  20. Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory IT-26, 26–37 (1980)

    Article  MathSciNet  Google Scholar 

  21. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997), http://doi.acm.org/10.1145/279232.279236

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Finthammer, M., Beierle, C. (2014). A Two-Level Approach to Maximum Entropy Model Computation for Relational Probabilistic Logic Based on Weighted Conditional Impacts. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11508-5_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11507-8

  • Online ISBN: 978-3-319-11508-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics