Abstract
We propose a model of a 2-dimensional 2-state asynchronous updating cellular automaton with inner-independent radius-dependent totalistic rule. An inner-independent rule is such that the cell’s updating does not depend on the state of the center cell. A radius-dependent totalistic rule is a totalistic rule which the neighborhood is an extended Moore neighborhood that consists of cells at orthogonal or diagonal distances 1, 2, 3, 4 and 5 from the center cell, taking summations of the living cells in their domain individually. The rule set designed in this paper is universal for computation, that is, any delay-insensitive circuit can be constructed. We also show the algorithm to prove the correct operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular automata. J. Stat. Phys. 114(1/2), 261–289 (2004)
Adachi, S., Peper, F., Lee, J.: Universality of Hexagonal Asynchronous Totalistic Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 91–100. Springer, Heidelberg (2004)
Adachi, S., Lee, J., Peper, F.: Universal 2-State Asynchronous Cellular Automaton with Inner-Independent Transitions. In: Proc. of 4th International Workshop on Natural Computing (IWNC 2009). Proceedings in Information and Communications Technology (PICT 2), pp. 107–116. Springer-Japan (2009)
Adachi, S., Lee, J., Peper, F.: Universality of 2-State Asynchronous Cellular Automaton with Inner-Independent Totalistic Transitions. In: 16th International Workshop on Cellular Automata and Discrete Complex Systems, pp. 153–172 (2010)
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Wining Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982)
Hauck, S.: Asynchronous design methodologies: an overview. Proc. IEEE 83(1), 69–93 (1995)
Ingerson, T.E., Buvel, R.L.: Structures in asynchronous cellular automata. Physica D 10, 59–68 (1984)
Keller, R.M.: Towards a theory of universal speed-independent modules. IEEE Trans. Comput. C-23(1), 21–33 (1974)
Lee, J., Adachi, S., Peper, F., Morita, K.: Embedding universal delay-insensitive circuits in asynchronous cellular spaces. Fund. Inform. 58(3/4), 295–320 (2003)
Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70, 201–220 (2005)
Lee, J., Peper, F., Adachi, S., Mashiko, S.: Universal Delay-Insensitive Systems With Buffering Lines. IEEE Trans. Circuits and Systems 52(4), 742–754 (2005)
Lee, J., Peper, F.: On brownian cellular automata. In: Proc. of Automata 2008, pp. 278–291. Luniver Press, UK (2008)
von Neumann, J.: The Theory of Self-Reproducing Automata, edited and completed by A. W. Burks. University of Illinois Press (1966)
Patra, P., Fussell, D.S.: Efficient building blocks for delay insensitive circuits. In: Proceedings of the International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 196–205. IEEE Computer Society Press, Silver Spring (1994)
Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4), 469–485 (2003)
Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-Tolerance in Nanocomputers: A Cellular Array Approach. IEEE Trans. Nanotech. 3(1), 187–201 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Adachi, S. (2014). Inner-Independent Radius-Dependent Totalistic Rule of Universal Asynchronous Cellular Automaton. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-11520-7_57
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11519-1
Online ISBN: 978-3-319-11520-7
eBook Packages: Computer ScienceComputer Science (R0)