Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inner-Independent Radius-Dependent Totalistic Rule of Universal Asynchronous Cellular Automaton

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

  • 3099 Accesses

Abstract

We propose a model of a 2-dimensional 2-state asynchronous updating cellular automaton with inner-independent radius-dependent totalistic rule. An inner-independent rule is such that the cell’s updating does not depend on the state of the center cell. A radius-dependent totalistic rule is a totalistic rule which the neighborhood is an extended Moore neighborhood that consists of cells at orthogonal or diagonal distances 1, 2, 3, 4 and 5 from the center cell, taking summations of the living cells in their domain individually. The rule set designed in this paper is universal for computation, that is, any delay-insensitive circuit can be constructed. We also show the algorithm to prove the correct operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular automata. J. Stat. Phys. 114(1/2), 261–289 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adachi, S., Peper, F., Lee, J.: Universality of Hexagonal Asynchronous Totalistic Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 91–100. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Adachi, S., Lee, J., Peper, F.: Universal 2-State Asynchronous Cellular Automaton with Inner-Independent Transitions. In: Proc. of 4th International Workshop on Natural Computing (IWNC 2009). Proceedings in Information and Communications Technology (PICT 2), pp. 107–116. Springer-Japan (2009)

    Google Scholar 

  4. Adachi, S., Lee, J., Peper, F.: Universality of 2-State Asynchronous Cellular Automaton with Inner-Independent Totalistic Transitions. In: 16th International Workshop on Cellular Automata and Discrete Complex Systems, pp. 153–172 (2010)

    Google Scholar 

  5. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Wining Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982)

    Google Scholar 

  6. Hauck, S.: Asynchronous design methodologies: an overview. Proc. IEEE 83(1), 69–93 (1995)

    Article  MathSciNet  Google Scholar 

  7. Ingerson, T.E., Buvel, R.L.: Structures in asynchronous cellular automata. Physica D 10, 59–68 (1984)

    Article  MathSciNet  Google Scholar 

  8. Keller, R.M.: Towards a theory of universal speed-independent modules. IEEE Trans. Comput. C-23(1), 21–33 (1974)

    Article  Google Scholar 

  9. Lee, J., Adachi, S., Peper, F., Morita, K.: Embedding universal delay-insensitive circuits in asynchronous cellular spaces. Fund. Inform. 58(3/4), 295–320 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70, 201–220 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, J., Peper, F., Adachi, S., Mashiko, S.: Universal Delay-Insensitive Systems With Buffering Lines. IEEE Trans. Circuits and Systems 52(4), 742–754 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lee, J., Peper, F.: On brownian cellular automata. In: Proc. of Automata 2008, pp. 278–291. Luniver Press, UK (2008)

    Google Scholar 

  13. von Neumann, J.: The Theory of Self-Reproducing Automata, edited and completed by A. W. Burks. University of Illinois Press (1966)

    Google Scholar 

  14. Patra, P., Fussell, D.S.: Efficient building blocks for delay insensitive circuits. In: Proceedings of the International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 196–205. IEEE Computer Society Press, Silver Spring (1994)

    Google Scholar 

  15. Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4), 469–485 (2003)

    Article  Google Scholar 

  16. Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-Tolerance in Nanocomputers: A Cellular Array Approach. IEEE Trans. Nanotech. 3(1), 187–201 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Adachi, S. (2014). Inner-Independent Radius-Dependent Totalistic Rule of Universal Asynchronous Cellular Automaton. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics