Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Practical Image-Enhanced LBS for AR Applications

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking, and Services (MobiQuitous 2013)

Abstract

We have designed a multisensor indoor LBS suitable for augmented reality applications which, mainly based on computer vision techniques, provides precise estimations of both the 3D position and rotation of the device. Our proposal makes use of state-of-the-art IMU data processing techniques during the training phase in order to reliably generate a 3D model of the targeted environment, thus solving typical scalability issues related to visually repetitive structures in large indoor scenarios. A very efficient camera resection technique will then be used in the on-line phase, able to provide accurate 6 degrees of freedom estimations of the device position, with mean errors in the order of 5 cm and response times below 250 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Values for \(d\) in typical indoor scenarios are of a few meters (9 m in this work).

  2. 2.

    The ground-truth considered to get these numbers was obtained using the 3D model of the scene, adding the test images and reestimating their reconstruction coordinates within it.

References

  1. Arai, I., Horimi, S., Nishio, N.: Wi-foto 2: heterogeneous device controller using wi-fi positioning and template matching. In: Proceedings of Pervasive’10 (2010)

    Google Scholar 

  2. Beauregard, S., Haas, H.: Pedestrian dead reckoning: a basis for personal positioning. In: Proceedings of WPNC’06, pp. 27–35 (2006)

    Google Scholar 

  3. Fiore, P.D.: Efficient linear solution of exterior orientation. IEEE Trans. PAMI 23(2), 140–148 (2001)

    Article  MathSciNet  Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graphics Appl. 25(6), 38–46 (2005)

    Article  Google Scholar 

  6. Fraundorfer, F., Wu, C., Frahm, J.M., Pollefeys, M.: Visual word based location recognition in 3D models using distance augmented weighting. In: Proceedings of 4th 3DPVT (2008)

    Google Scholar 

  7. Garcia, V., Debreuve, E., Barlaud, M.: Fast k-nearest neighbor search using GPU. In: IEEE Proceedings of CVPRW’08, pp. 1–6 (2008)

    Google Scholar 

  8. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  9. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  11. Hattori, K., et al.: Hybrid indoor location estimation system using image processing and WiFi strength. In: IEEE proceedings of WNIS 2009, pp. 406–411 (2009)

    Google Scholar 

  12. Li, X., Wang, J.: Image matching techniques for vision-based indoor navigation systems: performance analysis for 3D map based approach. In: IEEE Proceedings of the IPIN’12, pp. 1–8 (2012)

    Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Comput. 8(2), 22–31 (2009)

    Article  Google Scholar 

  15. Murillo, A.C., Guerrero, J., Sagues, C.: SURF features for efficient robot localization with omnidirectional images. In: IEEE Proceedings of ICRA’07, pp. 3901–3907 (2007)

    Google Scholar 

  16. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen, R.: Zee: zero-effort crowdsourcing for indoor localization. IN: ACM Proceedings of MobiCom12, pp. 293–304 (2012)

    Google Scholar 

  18. Ruiz-Ruiz, A.J., Canovas, O., Rubio Muñoz, R.A., Lopez-de-Teruel Alcolea, P.E.: Using SIFT and WiFi signals to provide location-based services for smartphones. In: Puiatti, A., Gu, T. (eds.) MobiQuitous 2011. LNICST, vol. 104, pp. 37–48. Springer, Heidelberg (2012)

    Google Scholar 

  19. Ruiz-Ruiz, A.J., Lopez-de-Teruel, P.E., Canovas,O.: A multisensor LBS using SIFT-based 3D models. In: IEEE Proceedings of IPIN’12, pp. 1–10 (2012)

    Google Scholar 

  20. Se, S., Lowe, D., Little, J.: Vision based global localization and mapping for mobile robots. IEEE Trans. Robot. 21(3), 364–375 (2005)

    Article  Google Scholar 

  21. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  22. Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: ACM Proceedings of Ubicomp’08, pp. 114–123 (2008)

    Google Scholar 

  23. Wu, C.: SiftGPU: a GPU implementation of scale invaraint feature transform (SIFT) (2012). http://cs.unc.edu/ccwu/siftgpu

  24. Wu, C.: Towards Linear-time Incremental Structure from Motion. In: 3DV’13 (2013)

    Google Scholar 

  25. QVision Qt CV library, University of Murcia (2013). http://qvision.sourceforge.net

Download references

Acknowledgments

This work was supported by the Spanish MINECO, as well as European Commission FEDER funds, under grant TIN2012-38341-C04-03. Additionally, this work was also supported by the Seneca Foundation, a Science and Technology Agency of Region of Murcia, under the Seneca Program 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Ruiz-Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ruiz-Ruiz, A.J., Lopez-de-Teruel, P.E., Canovas, O. (2014). Practical Image-Enhanced LBS for AR Applications. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds) Mobile and Ubiquitous Systems: Computing, Networking, and Services. MobiQuitous 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-11569-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11569-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11568-9

  • Online ISBN: 978-3-319-11569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics