Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Restricted Boltzmann Machines for Gender Classification

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

Abstract

This paper deals with automatic feature learning using a generative model called Restricted Boltzmann Machine (RBM) for the problem of gender recognition in face images. The RBM is presented together with some practical learning tricks to improve the learning capabilities and speedup the training process. The performance of the features obtained is compared against several linear methods using the same dataset and the same evaluation protocol. The results show a classification accuracy improvement compared with classical linear projection methods. Moreover, in order to increase even more the classification accuracy, we have run some experiments where an SVM is fed with the non-linear mapping obtained by the RBM in a tandem configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. on PAMI 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Bressan, M., Vitrià, J.: Nonparametric discriminant analysis and nearest neighbor classification. Pattern Recognition Letters 24(15), 2743–2749 (2003)

    Article  Google Scholar 

  3. Buchala, S., et al.: Dimensionality reduction of face images for gender classification. In: Proceedings of the Intelligent Systems, vol. 1, pp. 88–93 (2004)

    Google Scholar 

  4. Cai, D., He, X., Hu, Y., Han, J., Huang, T.: Learning a spatially smooth subspace for face recognition. In: CVPR, pp. 1–7 (2007)

    Google Scholar 

  5. Courville, A., Bergstra, J., Bengio, Y.: Unsupervised models of images by spike-and-slab rbms. In: ICML, pp. 1145–1152 (2011)

    Google Scholar 

  6. Huang, G.B., et al.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, Univ. of Massachusetts (October 2007)

    Google Scholar 

  7. Schmah, T., et al.: Generative versus discriminative training of rbms for classification of fmri images. In: NIPS, pp. 1409–1416 (2008)

    Google Scholar 

  8. Graf, A.B.A., Wichmann, F.A.: Gender classification of human faces. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 491–500. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. He, X., Niyogi, P.: Locality preserving projections. In: NIPS (2004)

    Google Scholar 

  10. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinton, G.E.: A practical guide to training restricted boltzmann machines. Technical report, University of Toronto (2010)

    Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. on PAMI 24(5), 707–711 (2002)

    Article  Google Scholar 

  14. Nair, V., Hinton, G.E.: 3d object recognition with deep belief nets. In: NIPS, pp. 1339–1347 (2009)

    Google Scholar 

  15. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: ICML, pp. 791–798 (2007)

    Google Scholar 

  16. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters 33(4), 431–437 (2012)

    Article  Google Scholar 

  17. Shobeirinejad, A., Gao, Y.: Gender classification using interlaced derivative patterns. In: ICPR, pp. 1509–1512 (2010)

    Google Scholar 

  18. Villegas, M., Paredes, R.: Dimensionality reduction by minimizing nearest-neighbor classification error. Pattern Recognition Letters 32(4), 633–639 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Albiol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mansanet, J., Albiol, A., Paredes, R., Villegas, M., Albiol, A. (2014). Restricted Boltzmann Machines for Gender Classification. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics