Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Resampling-Based Framework for Estimating Node Centrality of Large Social Network

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

We address a problem of efficiently estimating value of a centrality measure for a node in a large social network only using a partial network generated by sampling nodes from the entire network. To this end, we propose a resampling-based framework to estimate the approximation error defined as the difference between the true and the estimated values of the centrality. We experimentally evaluate the fundamental performance of the proposed framework using the closeness and betweenness centralities on three real world networks, and show that it allows us to estimate the approximation error more tightly and more precisely with the confidence level of 95% even for a small partial network compared with the standard error traditionally used, and that we could potentially identify top nodes and possibly rank them in a given centrality measure with high confidence level only from a small partial network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonacichi, P.: Power and centrality: A family of measures. Amer. J. Sociol. 92, 1170–1182 (1987)

    Article  Google Scholar 

  2. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001)

    Article  MATH  Google Scholar 

  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  4. Chen, W., Lakshmanan, L., Castillo, C.: Information and influence propagation in social networks. Synthesis Lectures on Data Management 5(4), 1–177 (2013)

    Article  Google Scholar 

  5. Freeman, L.: Centrality in social networks: Conceptual clarification. Social Networks 1, 215–239 (1979)

    Article  Google Scholar 

  6. Henzinger, M.R., Heydon, A., Mitzenmacher, M., Najork, M.: On near-uniform url sampling. The International Journal of Computer and Telecommunications Networking 33(1-6), 295–308 (2000)

    Google Scholar 

  7. Katz, L.: A new status index derived from sociometric analysis. Sociometry 18, 39–43 (1953)

    MATH  Google Scholar 

  8. Kleinberg, J.: The convergence of social and technological networks. Communications of ACM 51(11), 66–72 (2008)

    Article  Google Scholar 

  9. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Google Scholar 

  10. Kurant, M., Markopoulou, A., Thiran, P.: Towards unbiased bfs sampling. IEEE Journal on Selected Areas in Communications 29(9), 1799–1809 (2011)

    Article  Google Scholar 

  11. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 631–636 (2006)

    Google Scholar 

  12. Newman, M.E.J.: Scientific collaboration networks. ii. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132 (2001)

    Google Scholar 

  13. Zhuge, H., Zhang, J.: Topological centrality and its e-science applications. Journal of the American Society of Information Science and Technology 61, 1824–1841 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ohara, K., Saito, K., Kimura, M., Motoda, H. (2014). Resampling-Based Framework for Estimating Node Centrality of Large Social Network. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics