Abstract
The hydration of Portland cement is a complicated process and still not fully understood. Much effort has been accomplished over the past years to get the accurate model to simulate the hydration process. However, currently existing methods using positive derivation from the conditions for physical-chemical reaction are lack of information in real hydration data. In this paper, one model based on Flexible Neural Tree (FNT) with acceptable goodness of fit was applied to the prediction of the cement hydration process from the real microstructure image data of the cement hydration which has been obtained by Micro Computed Tomography (micro-CT) technology. Been prepared on the basis of previous research, this paper used probabilistic incremental program evolution (PIPE) algorithm to optimize the flexible neural tree structure, and particle swarm optimization (PSO) algorithm to optimize the parameters of the model. Experimental results show that this method is efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, W., Brouwers, H.J.H.: Mitigating the Effects of System Resolution on Computer Simulation of Portland Cement Hydration. Cem. Concr. Compos. 30, 779–787 (2008)
Tennis, P.D., Bhatty, J.I.: Characteristics of Portland and Blended Cements Results of a Survey of Manufacturers. In: Cement Industry Technical Conference, pp. 156–164. IEEE Press, Holly Hill (2006)
Tomosawa, F.: Kinetic Hydration Model of Cement. Cem. Concr. 23, 53–57 (1974)
Krstulović, R., Dabić, P.: A Conceptual Model of the Cement Hydration Process. Cem. Concr. Res. 30, 693–698 (2000)
Kondo, R., Kodama, M.: On the Hydration Kinetics of Cement. Semento Gijutsu Nenpo 21, 77–82 (1967)
Kondo, R., Ueda, S.: Kinetics and Mechanisms of the Hydration of Cements. In: Proceedings of the Fifth International Symposium on the Chemistry of Cement, pp. 203–248. Cement Association of Japan, Tokyo (1968)
Pommersheim, J.M., Clifton, J.R.: Mathematical Modeling of Tricalcium Silicate Hydration. Cem. Concr. Res. 9, 765–770 (1979)
Tomosawa, F.: Development of a Kinetic Model for Hydration of Cement. In: Proceedings of the 10th International Congress on the Chemistry of Cement, pp. 125–137. Amarkai AB and Congrex, Sweden (1997)
Wang, L., Yang, B., Zhao, X.Y., Chen, Y.H., Chang, J.: Reverse Extraction of Early-age Hydration Kinetic Equation from Observed Data of Portland Cement. Science China Technological Sciences 53, 1540–1553 (2010)
Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series Forecasting using Flexible Neural Tree Model. Inf. Sci. 174, 219–235 (2005)
Salustowicz, R.P., Schmidhuber, J.: Probabilistic Incremental Program Evolution. Evolutionary Computation 5, 123–141 (1995)
Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proceedings of the Congress on Evolutionary Computation, pp. 1671-1676. IEEE Press, Nanjing (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Liang, Zf., Yang, B., Wang, L., Zhang, X., Zhang, L., He, N. (2014). Evolving Flexible Neural Tree Model for Portland Cement Hydration Process. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8794. Springer, Cham. https://doi.org/10.1007/978-3-319-11857-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-11857-4_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11856-7
Online ISBN: 978-3-319-11857-4
eBook Packages: Computer ScienceComputer Science (R0)