Abstract
Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of diseases. This paper presents a combination of Principal Component Analysis (PCA) and ridgelet transform as an improved fusion approach for MRI and CT-scan. The proposed fusion approach involves image decomposition using 2D-Ridgelet transform in order to achieve a compact representation of linear singularities. This is followed by application of PCA as a fusion rule to improve upon the spatial resolution. Fusion Factor (FF) and Structural Similarity Index (SSIM) are used as fusion metrics for performance evaluation of the proposed approach. Simulation results demonstrate an improvement in visual quality of the fused image supported by higher values of fusion metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dasarathy, B.V.: Information Fusion in the Realm of Medical Applications – A Bibliographic Glimpse at its Growing Appeal. Information Fusion 13(1), 1–9 (2012)
Schoder, H., Yeung, H.W., Gonen, M., Kraus, D., Larson, S.M.: Head and Neck Cancer: Clinical Usefulness and Accuracy of PET/CT Image Fusion. Radiology, 65–72 (2004)
Nakamoto, Y., Tarnai, K., Saga, T., Higashi, T., Hara, T., Suga, T., Koyama, T., Togashi, K.: Clinical Value of Image Fusion from MR and PET in Patients with Head and Neck Cancer. Molecular Imaging and Biology, 46–53 (2009)
Singh, R., Khare, A.: Fusion of Multimodal Images using Daubechies Complex Wavelet Transform- A Multiresolution Approach. Info. Fusion. 19, 49–60 (2014)
Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A New Look at IHS-Like Image Fusion Methods. Information Fusion 2(3), 177–186 (2001)
Gillespie, A.R., Kahle, A.B., Walker, R.E.: Color enhancement of highly correlated images—II. Channel Ratio and ‘Chromaticity’ Transformation Techniques. Remote Sens. Environ. 22, 343–365 (1987)
Mallat, S.: A Theory for Multi-Resolution Signal: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
Shensa, M.J.: The discrete wavelet transform: Wedding the à Trous and Mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)
ALEjaily, A.M.: Fusion of Remote Sensing Images Using Contourlet Transform. Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, 213–218 (2008)
Cunha, L.D., Zhou, J.P.: The Non-Subsampled Contourlet Transform: Theory, Design, and Applications. IEEE Tran. on Image Processing 15(10), 3089–3101 (2006)
Luo, Y., Liu, R., Zhu, Y.Z.: Fusion of Remote Sensing Image Based on the PCA & Atrous Wavelet Transform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Info. Sciences. XXXVII. Part B7, 1155–1158 (2008)
Petrovic, V.S., Costas, S.X.: Gradient-Based Multiresolution Image Fusion. IEEE Transactions on Image Processing 13(2), 228–237 (2004)
Sadhasivam, S.K., Keerthivasan, M.K., Muttan, S.: Implementation of Max Principle with PCA in Image Fusion for Surveillance and Navigation Application. Electronic Letters on Computer Vision and Image Analysis 10(1), 1–10 (2011)
Xu, Z.: Medical Image Fusion Using Multi-Level Local Extrema. Elsevier-Information Fusion 19, 38–48 (2014)
Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing, Inderscience Publishers 1(1), 38–49 (2013)
Srivastava, A., Alankrita, Raj, A., Bhateja, V.: Combination of Wavelet Transform and Morphological Filtering for Enhancement of Magnetic Resonance Images. In: Snasel, V., Platos, J., El-Qawasmeh, E. (eds.) ICDIPC 2011, Part I. Communications in Computer and Information Science, vol. 188, pp. 460–474. Springer, Heidelberg (2011)
Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: A Polynomial Filtering Model for Enhancement of Mammogram Lesions. In: Proc. of IEEE Int. Symposium on Medical Measurements and Applications, pp. 97–100 (2013)
Siddhartha, Gupta, R., Bhateja, V.: A Log-Ratio based Unsharp Masking (UM) Approach for Enhancement of Digital Mammograms. In: Proc. CUBE Int. Information Tech. Conference & Exhibition, pp. 26–31 (2012)
Bhateja, V., Devi, S.: An Improved Non-Linear Transformation Function for Enhancement of Mammographic Breast Masses. In: Proc. 3rd International Conference on Electronics & Computer Technology, vol. 5, pp. 341–346 (2011)
Alankrita., Raj, A., Shrivastava, A., Bhateja, V.: Contrast Improvement of Cerebral MRI Features using Combination of Non-Linear Enhancement Operator and Morphological Filter. In: Proc. of (IEEE) International Conference on Network and Computational Intelligence (ICNCI 2011), Zhengzhou, China, vol. 4, pp. 182–187 (2011)
Siddhartha., Gupta, R., Bhateja, V.: An Improved Unsharp Masking Algorithm for Enhancement of Mammographic Masses. In: Proc. of IEEE Students Conference on Engineering and Systems (SCES-2012), Allahabad, India, pp. 234–237 (March 2012)
Siddhartha., Gupta, R., Bhateja, V.: A New UnSharp Masking Algorithm for Mammography using Non-Linear Enhancement Function. In: Proc. of the (Springer) International Conference on Information Systems Design and Intelligent Applications (INDIA 2012), Vishakhapatnam, India, pp. 779–786 (January 2012)
Pandey, A., Yadav, A., Bhateja, V.: Design of New Volterra Filter for Mammogram Enhancement. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 143–151. Springer, Heidelberg (2013)
Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: Improvement of Masses Detection in Digital Mammograms employing Non-Linear Filtering. In: Proc. of (IEEE) International Multi-Conference on Automation, Computing, Control, Communication and Compressed Sensing (iMac4s-2013), Palai-Kottayam, Kerala (India), vol. 119, pp. 406–408 (March 2013)
Pandey, A., Yadav, A., Bhateja, V.: Contrast Improvement of Mammographic Masses Using Adaptive Volterra Filter. In: Proc. of (Springer) 4th International Conference on Signal and Image Processing (ICSIP 2012), Coimbatore, India, vol. 2, pp. 583–593 (December 2012)
Bhateja, V., Misra, M., Urooj, S., Lay-Ekuakille, A.: A Robust Polynomial Filtering Framework for Mammographic Image Enhancement from Biomedical Sensors. IEEE Sensors Journal 13(11), 4147–4156 (2013)
Pandey, A., Yadav, A., Bhateja, V.: Volterra Filter Design for Edge Enhancement of Mammogram Lesions. In: Proc. of (IEEE) 3rd International Advance Computing Conference (IACC 2013), Ghaziabad (U.P.), India, pp. 1219–1222 (February 2013)
Bhateja, V., Devi, S.: A Novel Framework for Edge Detection of Microcalcifications using a Non-Linear Enhancement Operator and Morphological Filter. In: Proc. of (IEEE) 3rd International Conference on Electronics & Computer Technology (ICECT-2011), Kanyakumari (India), vol. 5, pp. 419–424 (April 2011)
Alankrita., Raj, A., Shrivastava, A., Bhateja, V.: Computer Aided Detection of Brain Tumor in MR Images. International Journal on Engineering and Technology (IACSIT-IJET) 3, 523–532 (2011)
Granai, L., Moschetti, F., Vandergheynst, P.: Ridgelet Transform Applied to Motion Compensated Images. In: IEEE International Conference on Acoustics, Speech, & Signal Processing, April 6-10, pp. 561–564 (2003)
Ali, F.E., El-Dokany, I.M., Saad, A.A., Abd El-Samie, F.E.: Curvelet Fusion of MR and CT Images. Progress in Electromagnetics Research 3, 215–224 (2008)
Naidu, V.P.S., Rao, J.R.: Pixel-level Image Fusion using Wavelets and Principal Component Analysis. Defence Science Journal 58(3), 338–352 (2008)
Gupta, P., Tripathi, N., Bhateja, V.: Multiple Distortion Pooling Image Quality Assessment. International Journal on Convergence Computing, Inderscience Publishers 1(1), 60–72 (2013)
Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based Perceptual Quality Estimation Measure for Color Images. ACEEE International Journal on Signal & Image Processing (IJSIP) 3(1), 63–68 (2012)
Bhateja, V., Devi, S.: A Reconstruction Based Measure for Assessment of Mammogram Edge-Maps. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 741–746. Springer, Heidelberg (2013)
Trivedi, M., Jaiswal, A., Bhateja, V.: A New Contrast Measurement Index Based on Logarithmic Image Processing Model. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 715–723. Springer, Heidelberg (2013)
Jaiswal, A., Trivedi, M., Bhateja, V.: A No-Reference Contrast Assessment Index based on Foreground and Background. In: Proc. 2nd Students Conference on Engineering and Systems, pp. 460–464 (2013)
Bhateja, V., Srivastava, A., Kalsi, A.: Reduced Reference IQA based on Structural Dissimilarity. In: Proc. Int. Conf. on Signal Proc. and Integ, pp. 63–68 (2014)
Piella, G., Heijmans, H.: A New Quality Metric for Image Fusion. In: 2003 International Conference on Image Processing, Barcelona, Spain, (September 14, 2003)
Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM Index for Color Images Employing Reduced-Reference Evaluation. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) FICTA 2013. AISC, vol. 247, pp. 451–458. Springer, Heidelberg (2014)
Zheng, Y., Essock, E.A., Hansen, B.C.: An Advanced Image Fusion Algorithm Based on Wavelet Transform –Incorporation with PCA and Morphological Processing. In: Proc. SPIE, vol. 5298, pp. 177–187 (2004)
Yang, B., Li, S.: Pixel-Level Image fusion with Simultaneous Orthogonal Matching Pursuit. Information Fusion 13, 10–19 (2012)
Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-Based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging 26(3), 530–543 (2013)
Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. Journal of Medical Engineering and Technology 37(4), 292–306 (2013)
Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: PCA-SVM based CAD System for focal liver lesions from B-Mode ultrasound. Defence Science Journal 63(5), doi:10.1007/s10278-014-9685-0
Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Neural network ensemble based CAD system for focal liver lesions using B-mode ultrasound. Journal of Digital Imaging, doi:10.1007/s10278-014-9685-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krishn, A., Bhateja, V., Himanshi, Sahu, A. (2015). PCA Based Medical Image Fusion in Ridgelet Domain. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-12012-6_52
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12011-9
Online ISBN: 978-3-319-12012-6
eBook Packages: EngineeringEngineering (R0)