Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Understanding the Treatment of Outliers in Multi-Objective Estimation of Distribution Algorithms

  • Conference paper
  • First Online:
Advances in Artificial Intelligence -- IBERAMIA 2014 (IBERAMIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8864))

Included in the following conference series:

  • 1686 Accesses

Abstract

It has been already documented the fact that estimation of distribution algorithms suffer from loss of population diversity and improper treatment of isolated solutions. This situation is particularly severe in the case of multi-objective optimization, as the loss of solution diversity limits the capacity of an algorithm to explore the Pareto-optimal front at full extent.

A set of approaches has been proposed to deal with this problem but —to the best of our knowledge— there has not been a comprehensive comparative study on the outcome of those solutions and at what degree they actually solve the issue.

This paper puts forward such study by comparing how current approaches handle diversity loss when confronted to different multi-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation, 2 edn. Springer, New York (2007)

    Google Scholar 

  2. Corne, D.W.: Single objective = past, multiobjective = present, ??? = future. In: Michalewicz, Z. (ed.) 2008 IEEE Conference on Evolutionary Computation (CEC), part of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008). IEEE Press, Piscataway (2008)

    Google Scholar 

  3. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E., eds.: Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer (2006)

    Google Scholar 

  4. Martí, L.: Scalable Multi-Objective Optimization. PhD thesis, Departmento de Informática, Universidad Carlos III de Madrid, Colmenarejo, Spain (2011)

    Google Scholar 

  5. Martí, L., García, J., Berlanga, A., Coello Coello, C.A., Molina, J.M.: MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms. Operations Research Letters 39(2), 150–154 (2011)

    Google Scholar 

  6. Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: Scalable multiobjective optimization with a neural estimation of distribution algorithm. In: GECCO 2008: 10th Annual Conference on Genetic and Evolutionary Computation, pp. 689–696. ACM Press, New York (2008)

    Google Scholar 

  7. Martí, L., García, J., Berlanga, A., Molina, J.M.: Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm. Annals of Mathematics and Artificial Intelligence 68(4), 247–273 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Branke, J., Miettinen, K., Deb, K., Słowiński, R., eds.: Multiobjective Optimization. LNCS. vol. 5252 Springer, Heidelberg (2008)

    Google Scholar 

  9. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. SCI, pp. 223–248. Springer (2006)

    Google Scholar 

  10. Ahn, C.W.: Advances in Evolutionary Algorithms. Design and Practice. Springer (2006). ISBN: 3-540-31758-9

    Google Scholar 

  11. Ahn, C.W., Ramakrishna, R.S., Goldberg, D.E.: Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 840–851. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Bosman, P.A.N., Thierens, D.: The Naive MIDEA: A Baseline Multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Bosman, P.A., Thierens, D.: Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, p. 500. ACM Press, New York (2007)

    Google Scholar 

  14. Bosman, P.A.N.: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization. Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, p. 351. ACM Press, New York (2010)

    Google Scholar 

  15. Hawkins, D.: Identification of Outliers. Chapman and Hall (1980)

    Google Scholar 

  16. Hodge, V.: A survey of outlier detection methodologies. Artificial Intelligence Review, 1–43 (2004)

    Google Scholar 

  17. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: Fast outlier detection using the local correlation integral. In: Proceedings 19th International Conference on Data Engineering (ICDE 2003), pp. 315–326. IEEE Press (2003)

    Google Scholar 

  18. Bader, J.: Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods. PhD thesis, ETH Zurich, Switzerland (2010)

    Google Scholar 

  19. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical report, University of Essex, Colchester, UK and Nanyang Technological University, Singapore (2009)

    Google Scholar 

  20. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martí, L., Sanchez-Pi, N., Vellasco, M. (2014). Understanding the Treatment of Outliers in Multi-Objective Estimation of Distribution Algorithms. In: Bazzan, A., Pichara, K. (eds) Advances in Artificial Intelligence -- IBERAMIA 2014. IBERAMIA 2014. Lecture Notes in Computer Science(), vol 8864. Springer, Cham. https://doi.org/10.1007/978-3-319-12027-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12027-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12026-3

  • Online ISBN: 978-3-319-12027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics