Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Armstrong-Style Inference System for Attribute Implications with Temporal Semantics

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8825))

Abstract

We show a complete axiomatization of a logic of attribute implications describing dependencies between attributes of objects which are observed in consecutive points in time. The attribute implications we consider are if-then formulas expressing presence of attributes of objects relatively in time. The semantics of the attribute implications is defined based on presence/absence of attributes of objects in consecutive points of time. The presented results extend the classic results on Armstrong-style completeness of the logic of attribute implications by using the time points as additional component. The ordinary results can be seen as special case of our results when only a single time point is considered.

Supported by grant no. P202/14–11585S of the Czech Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993)

    Chapter  Google Scholar 

  2. Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L., Freeman, H. (eds.) Information Processing 1974: Proceedings of IFIP Congress, pp. 580–583. North Holland, Amsterdam (1974)

    Google Scholar 

  3. Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)

    Google Scholar 

  4. Cordero, P., Mora, A., de Guzmán, I.P., Enciso, M.: Non-deterministic ideal operators: An adequate tool for formalization in data bases. Discrete Applied Mathematics 156(6), 911–923 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)

    Google Scholar 

  6. Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM Journal of Research and Development 21(6), 534–544 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)

    Article  MATH  Google Scholar 

  8. Feng, L., Yu, J.X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. The VLDB Journal 11(2), 153–175 (2002)

    Article  Google Scholar 

  9. Gabbay, D.M.: Tense systems with discrete moments of time, part I. Journal of Philosophical Logic 1(1), 35–44 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabbay, D.M.: Model theory for tense logics. Annals of Mathematical Logic 8(1-2), 185–236 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc., Secaucus (1997)

    Google Scholar 

  12. Ganter, B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 186–195. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  14. Huang, Y.P., Kao, L.J., Sandnes, F.E.: Efficient mining of salinity and temperature association rules from argo data. Expert Syst. Appl. 35(1-2), 59–68 (2008)

    Article  Google Scholar 

  15. Lee, A.J.T., Wang, C.S., Weng, W.Y., Chen, Y.A., Wu, H.W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)

    Article  Google Scholar 

  16. Lee, A.J.T., Wu, H.W., Lee, T.Y., Liu, Y.H., Chen, K.T.: Mining closed patterns in multi-sequence time-series databases. Data Knowl. Eng. 68(10), 1071–1090 (2009)

    Article  Google Scholar 

  17. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Google Scholar 

  18. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag New York, Inc., New York (1984)

    Book  MATH  Google Scholar 

  19. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: Mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18(4), 423–454 (2000)

    Article  Google Scholar 

  20. Maier, D.: Theory of Relational Databases. Computer Science Pr., Rockville (1983)

    Google Scholar 

  21. Tung, A.K., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: Mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 297–301. ACM, New York (1999)

    Google Scholar 

  22. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series, vol. 83, pp. 445–470. Springer, Netherlands (2009)

    Google Scholar 

  23. Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Triska, J., Vychodil, V. (2014). Towards Armstrong-Style Inference System for Attribute Implications with Temporal Semantics. In: Torra, V., Narukawa, Y., Endo, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2014. Lecture Notes in Computer Science(), vol 8825. Springer, Cham. https://doi.org/10.1007/978-3-319-12054-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12054-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12053-9

  • Online ISBN: 978-3-319-12054-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics