Abstract
We show a complete axiomatization of a logic of attribute implications describing dependencies between attributes of objects which are observed in consecutive points in time. The attribute implications we consider are if-then formulas expressing presence of attributes of objects relatively in time. The semantics of the attribute implications is defined based on presence/absence of attributes of objects in consecutive points of time. The presented results extend the classic results on Armstrong-style completeness of the logic of attribute implications by using the time points as additional component. The ordinary results can be seen as special case of our results when only a single time point is considered.
Supported by grant no. P202/14–11585S of the Czech Science Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993)
Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L., Freeman, H. (eds.) Information Processing 1974: Proceedings of IFIP Congress, pp. 580–583. North Holland, Amsterdam (1974)
Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)
Cordero, P., Mora, A., de Guzmán, I.P., Enciso, M.: Non-deterministic ideal operators: An adequate tool for formalization in data bases. Discrete Applied Mathematics 156(6), 911–923 (2008)
Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)
Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM Journal of Research and Development 21(6), 534–544 (1977)
Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)
Feng, L., Yu, J.X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. The VLDB Journal 11(2), 153–175 (2002)
Gabbay, D.M.: Tense systems with discrete moments of time, part I. Journal of Philosophical Logic 1(1), 35–44 (1972)
Gabbay, D.M.: Model theory for tense logics. Annals of Mathematical Logic 8(1-2), 185–236 (1975)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc., Secaucus (1997)
Ganter, B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 186–195. Springer, Heidelberg (2004)
Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
Huang, Y.P., Kao, L.J., Sandnes, F.E.: Efficient mining of salinity and temperature association rules from argo data. Expert Syst. Appl. 35(1-2), 59–68 (2008)
Lee, A.J.T., Wang, C.S., Weng, W.Y., Chen, Y.A., Wu, H.W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)
Lee, A.J.T., Wu, H.W., Lee, T.Y., Liu, Y.H., Chen, K.T.: Mining closed patterns in multi-sequence time-series databases. Data Knowl. Eng. 68(10), 1071–1090 (2009)
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)
Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag New York, Inc., New York (1984)
Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: Mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18(4), 423–454 (2000)
Maier, D.: Theory of Relational Databases. Computer Science Pr., Rockville (1983)
Tung, A.K., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: Mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 297–301. ACM, New York (1999)
Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series, vol. 83, pp. 445–470. Springer, Netherlands (2009)
Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Triska, J., Vychodil, V. (2014). Towards Armstrong-Style Inference System for Attribute Implications with Temporal Semantics. In: Torra, V., Narukawa, Y., Endo, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2014. Lecture Notes in Computer Science(), vol 8825. Springer, Cham. https://doi.org/10.1007/978-3-319-12054-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-12054-6_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12053-9
Online ISBN: 978-3-319-12054-6
eBook Packages: Computer ScienceComputer Science (R0)