Abstract
The omega pairing is proposed as a variant of Weil pairing on special elliptic curves using automorphisms. In this paper, we generalize the omega pairing to general hyperelliptic curves and use the pairing lattice to construct the optimal omega pairing which has short Miller loop length and simple final exponentiation. On some special hyperelliptic curves, the optimal omega pairing could be super-optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Miller, V.S.: The Weil Pairing and its efficient calculation. J. Cryptol. 17(4), 235–261 (2004)
Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
Barreto, P.S.L.M., Galbraith, S., OhEigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Des. Codes Crypt. 42(3), 239–271 (2007)
Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006)
Zhao, C.A., Zhang, F., Huang, J.: A note on the Ate pairing. Int. J. Inf. Secur. Arch. 7(6), 379–382 (2008)
Lee, E., Lee, H., Park, C.: Efficient and generalized pairing computation on Abelien varieties. IEEE Trans. Inf. Theory 55(4), 1793–1803 (2009)
Zhao, C.A., Xie, D., Zhang, F., Zhang, J., Chen, B.L.: Computing bilinear pairings on elliptic curves with automorphisms. Des. Codes Crypt. 58(1), 35–44 (2011)
Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)
Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 430–447. Springer, Heidelberg (2007)
Zhang, F.: Twisted Ate pairing on hyperelliptic curves and applications Sciece China. Inf. Sci. 53(8), 1528–1538 (2010)
Fan, X., Gong, G., Jao, D.: Speeding up pairing computations on genus 2 hyperelliptic curves with efficiently computable automorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 243–264. Springer, Heidelberg (2008)
Fan, X., Gong, G., Jao, D.: Efficient pairing computation on genus 2 curves in projective coordinates. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 18–34. Springer, Heidelberg (2009)
Tang, C., Xu, M., Qi, Y.: Faster pairing computation on genus 2 hyperelliptic curves. Inf. Process. Lett. 111, 494–499 (2011)
Balakrishnan, J., Belding, J., Chisholm, S., Eisenträger, K., Stange, K., Teske, E.: Pairings on hyperelliptic curves (2009). http://www.math.uwaterloo.ca/~eteske/teske/pairings.pdf
Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp 48(177), 95–101 (1987)
Mumford, D.: Tata Lectures on Theta I, II. Birkhäuser, Boston (1983/84)
Howe, E.W.: The Weil pairing and the Hilbert symbol. Math. Ann. 305, 387–392 (1996)
Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17, 263–276 (2004)
Choie, Y., Lee, E.: Implementation of Tate pairing on hyperelliptic curves of genus 2. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 97–111. Springer, Heidelberg (2004)
Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)
Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 430–447. Springer, Heidelberg (2007)
Granger, R., Page, D.L., Smart, N.P.: High security pairing-based cryptography revisited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 480–494. Springer, Heidelberg (2006)
Silverman, H.: The Arithmetic of Elliptic Curves. GTM, vol. 106, 2nd edn. Springer, New York (2009)
Zhao, C.A., Zhang, F., Huang, J.: All pairings are in a group. IEICE Trans. Fundam. E91–A(10), 3084–3087 (2008)
Acknowledgments
We would like to thank the anonymous reviewers for their helpful comments. This work is supported by the National 973 Program of China (No. 2011CB302400), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA06010701, No. XDA06010702), the National Natural Science Foundation of China (No. 61303257) and Institute of Information Engineering’s Research Project on Cryptography (No. Y3Z0023103, No. Y3Z0011102).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Explicit Proofs
A Explicit Proofs
Proof of Lemma 1: We denote \(D_l=\varepsilon (D_{l})-m_l(P_\infty )\) for \(l=1, 2\) and \([k] D_l=\varepsilon ([k]D_{l})-m_{lk}(P_\infty )\) for \(k=i, j. \) Let \(u_\infty \) be a \(\mathbb {F}_{q}\)-rational uniformizer for \(P_\infty \) and assume \(supp(div(u_\infty ))\cap supp(\varepsilon (D_{1}))=\emptyset \). Thus
Since \(f_{i,D_1}\) is a \(\mathbb {F}_{q}\)-rational function, so
by Fermat’s Little Theorem. According to Weil reciprocity [23] , we have
In fact, \(u_\infty \) and reduced divisor \(D_1\) are \(\mathbb {F}_{q}\)-rational, so
On the other hand, \(ord_{P_\infty }({f_{j,D_{2}}{u_\infty }^{(jm_2-m_{2j})}})=0\) shows that this function is defined on \(P_\infty \). Then \({f_{j,D_{2}}{u_\infty }^{(jm_2-m_{2j})}} \) is normalised implies that
So the last indentity holds and it is followed by the equation
\(\square \)
Proof of Lemma 2: Let \(\phi \) be the \(\mathbb {F}_{q}\)-rational automorphism defined in Theorem 1, then \([\lambda ]D_1=\phi (D_1)\). Since the automorphism is also an isogeny, so we can denote its daul isogeny as \(\widehat{\phi }\), where \(\phi \circ \widehat{\phi }=[1]\) and \(\widehat{\phi }\) is also \(\mathbb {F}_{q}\)-rational. Thus \([\lambda ]D_2=\widehat{\phi }(D_1)\). According to Lemma \(3\) in [11], we have \(f_{\lambda ,[\lambda ]D_{1}}=\alpha f_{\lambda ,D_{1}}\circ \widehat{\phi }\) with \(\alpha \in \mathbb {F}_{q}\). By mathematical induction, the identity can be obtained. Following Lemma 1, let \(i=j=\lambda \), we have
Suppose the identity in Lemma 2 holds for \(i\), we can prove it also holds for \(i+1\). In fact,
The mathematical induction gives the result of this lemma. \(\square \)
Proof of Lemma 3: To prove the result, it suffices to show that \(\left( \left( \frac{f_{\lambda ,D_{1}}(\varepsilon (D_{2}))}{f_{\lambda ,D_{2}}(\varepsilon (D_{1}))}\right) ^{q-1}\right) ^r=1. \) As is stated in Lemma 1, \(u_\infty \) is a \(\mathbb {F}_{q}\)-rational uniformizer for \(P_\infty \). For the similar reasons with Equation (2),
Assume \(div(u_\infty )=P_\infty +D_\infty \) and \(supp(D_\infty ) \cap supp(div(f_{r,D_1}))=\emptyset \). According to Weil reciprocity [23] and Fermat’s Little Theorem, we have
This complete the proof of Lemma 3.
\(\square \)
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, S., Wang, K., Lin, D., Wang, T. (2014). Omega Pairing on Hyperelliptic Curves. In: Lin, D., Xu, S., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science(), vol 8567. Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-12087-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12086-7
Online ISBN: 978-3-319-12087-4
eBook Packages: Computer ScienceComputer Science (R0)