Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Secure Two-Party Computation from the Wire-Tap Channel

  • Conference paper
  • First Online:
Information Security and Cryptology -- ICISC 2013 (ICISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8565))

Included in the following conference series:

Abstract

We introduce a new tentative protocol for secure two-party computation of linear functions in the semi-honest model, based on coding techniques. We first establish a parallel between the second version of the wire-tap channel model and secure two-party computation. This leads us to our protocol, that combines linear coset coding and oblivious transfer techniques. Our construction requires the use of binary intersecting codes or \(q\)-ary minimal codes, which are also studied in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A.E., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonisoli, A.: Every equidistant linear code is a sequence of dual hamming codes. Ars Comb. 18, 181–186 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes. IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)

    Article  MATH  Google Scholar 

  4. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE computation from oblivious transfer. In: Workshop on Applied Homomorphic Cryptography (WAHC) (2013)

    Google Scholar 

  5. Cohen, G.D., Mesnager, S., Patey, A.: On minimal and quasi-minimal linear codes. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 85–98. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Cohen, G.D., Lempel, A.: Linear intersecting codes. Discret. Math. 56(1), 35–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, G.D., Litsyn, S., Zémor, G.: Upper bounds on generalized distances. IEEE Trans. Inf. Theory 40(6), 2090–2092 (1994)

    Article  MATH  Google Scholar 

  8. Cohen, G.D., Zémor, G.: Intersecting codes and independent families. IEEE Trans. Inf. Theory 40(6), 1872–1881 (1994)

    Article  MATH  Google Scholar 

  9. Cramer, R., Damgard, I., Nielsen, J.B.: Secure multiparty computation and secret sharing - an information theoretic approach, Book Draft (2012)

    Google Scholar 

  10. Ding, C., Yuan, J.: Covering and secret sharing with linear codes. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 11–25. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Encheva, S.B., Cohen, G.D.: Constructions of intersecting codes. IEEE Trans. Inf. Theory 45(4), 1234–1237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldreich, O.: The Foundations of Cryptography - vol. 2, Basic Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  13. Guo, Y., Li, Z., Lai, H.: A novel dynamic and verifiable secret sharing scheme based on linear codes. J. Shaanxi Normal Univ. (Nat. Sci. Ed.), 4, 013 (2010)

    Google Scholar 

  14. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  15. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipmaa, H.: Oblivious transfer or private information retrieval. http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php

  17. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 33–50. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  18. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report TR-81, Aiken Computation Lab, Harvard University (1981)

    Google Scholar 

  19. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–244. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Schneider, T.: Engineering Secure Two-Party Computation Protocols - Design, Optimization, and Applications of Efficient Secure Function Evaluation. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  21. Sloane, N.J.A.: Covering arrays and intersecting codes. J. Comb. Des. 1, 51–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, Y., Li, Z.: Secret sharing with a class of minimal linear codes. CoRR, abs/1202.4058 (2012)

    Google Scholar 

  23. Wei, V.K.-W.: Generalized hamming weights for linear codes. IEEE Trans. Inf. Theory 37(5), 1412–1418 (1991)

    Article  MATH  Google Scholar 

  24. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167. IEEE Computer Society (1986)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the ANR SecuLar project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Chabanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chabanne, H., Cohen, G., Patey, A. (2014). Towards Secure Two-Party Computation from the Wire-Tap Channel. In: Lee, HS., Han, DG. (eds) Information Security and Cryptology -- ICISC 2013. ICISC 2013. Lecture Notes in Computer Science(), vol 8565. Springer, Cham. https://doi.org/10.1007/978-3-319-12160-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12160-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12159-8

  • Online ISBN: 978-3-319-12160-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics