Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolved Bat Algorithm for Solving the Economic Load Dispatch Problem

  • Conference paper
Genetic and Evolutionary Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 329))

  • 1584 Accesses

Abstract

Economic Load Dispatch (ELD) is one of the important optimization tasks, which provides an economic condition for the power systems. In this paper, Evolved Bat Algorithm (EBA) as an evolutionary based approach is presented to solve the constraint economic load dispatched problem of thermal plants. The output generating power for all the power-generation units can be determined by the optimal technique for transmission losses, power balance and generation capacity, so that the total constraint cost function is minimized. A piecewise quadratic function is used to show the fuel cost equation of each generation unit, and the B-coefficient matrix is used to represent transmission losses. The systems with six units and fifteen units of thermal plants are used to test the demonstration of the solution quality and computation efficiency of the feasibility of the application of the Evolved Bat Algorithm for ELD. The experimental results compared with the genetic algorithm (GA) method for ELD, and with the particle swarm optimization (PSO) method for ELD, show that the applied EBA method for ELD can provide the higher efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, B.F.W., Wood, J., Sheble, G.B.: Power Generation, Operation and Control, 3rd edn., p. 656. Wiley (2013)

    Google Scholar 

  2. Han, X.S., Gooi, H.B.: Effective economic dispatch model and algorithm. International Journal of Electrical Power & Energy Systems 29(2), 113–120 (2007)

    Article  Google Scholar 

  3. Dillon, T.S., Edwin, K.W., Kochs, H.D., Taud, R.J.: Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination. IEEE Transactions on Power Apparatus and Systems PAS-97(6), 2154–2166 (1978)

    Article  Google Scholar 

  4. Liang, Z.X., Glover, J.D.: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses. IEEE Transactions on Power Systems 7(2), 544–550 (1992)

    Article  Google Scholar 

  5. Jong-Bae, P., Ki-Song, L., Joong-Rin, S., Lee, K.Y.: A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power Systems 20(1), 34–42 (2005)

    Article  Google Scholar 

  6. Zwe-Lee, G.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Transactions on Power Systems 18(3), 1187–1195 (2003)

    Article  Google Scholar 

  7. Po-Hung, C., Hong-Chan, C.: Large-scale economic dispatch by genetic algorithm. IEEE Transactions on Power Systems 10(4), 1919–1926 (1995)

    Article  Google Scholar 

  8. Bakirtzis, A., Petridis, V., Kazarlis, S.: Genetic algorithm solution to the economic dispatch problem. IEE Proceedings Generation, Transmission and Distribution 141(4), 377–382 (1994)

    Article  Google Scholar 

  9. Wong, K.P., Wong, Y.W.: Genetic and genetic/simulated-annealing approaches to economic dispatch. IEE Proceedings Generation, Transmission and Distribution 141(5), 507–513 (1994)

    Article  Google Scholar 

  10. Simopoulos, D.N., Kavatza, S.D., Vournas, C.D.: Unit commitment by an enhanced simulated annealing algorithm. IEEE Transactions on Power Systems 21(1), 68–76 (2006)

    Article  Google Scholar 

  11. Chowdhury, B.H., Rahman, S.: A review of recent advances in economic dispatch. IEEE Transactions on Power Systems 5(4), 1248–1259 (1990)

    Article  Google Scholar 

  12. Pan, J.-S., Tsai, P.-W., Liao, B.-Y., Tsai, M.-J., Istanda, V.: Bat Algorithm Inspired Algorithm for Solving Numerical Optimization Problems. Applied Mechanics and Materials 148-149(2012), 134–137 (2011)

    Google Scholar 

  13. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Rao, S.S., Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley (2009)

    Google Scholar 

  15. Arora, J.S.: Introduction to Optimum Design. Academic Press (2011)

    Google Scholar 

  16. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

    Article  Google Scholar 

  17. Zwe-Lee, G.: “Closure to “Discussion of ’Particle swarm optimization to solving the economic dispatch considering the generator constraints”. IEEE Transactions on Power Systems 19(4), 2122–2123 (2004)

    Article  Google Scholar 

  18. Yuhui, S., Eberhart, R.C.: Empirical study of particle swarm optimization, vol. 3, p. 1950 (1999)

    Google Scholar 

  19. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dao, TK., Pan, TS., Nguyen, TT., Chu, SC. (2015). Evolved Bat Algorithm for Solving the Economic Load Dispatch Problem. In: Sun, H., Yang, CY., Lin, CW., Pan, JS., Snasel, V., Abraham, A. (eds) Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-319-12286-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12286-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12285-4

  • Online ISBN: 978-3-319-12286-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics