Abstract
In this paper, we consider saliency detection problems from a unique perspective. We provide an implicit representation for the saliency map using level set evolution (LSE), and then combine LSE approach with energy functional minimization (EFM). Instead of introducing sophisticated segmentation procedures, we propose a flexible and lightweight LSE-EFM framework for saliency detection. The experimental results demonstrate our method outperforms several existing popular approaches. We then evaluate several computation strategies independently. The comparisons results indicate their effectiveness and strong abilities in combatting saliency confusions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR (2011)
Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR (2007)
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2009)
Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency in images. In: CVPR (2009)
Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer (2003)
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)
Hunt, R.W.G., Pointer, M.R.: Measuring colour. John Wiley & Sons (2011)
Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A bayesian framework for saliency using natural statistics. Journal of Vision 8(7) (2008)
Chang, J., Fisher, J.: Efficient mcmc sampling with implicit shape representations. In: CVPR (2011)
Kim, J., Fisher III, J.W., Yezzi, A., Çetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)
Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)
Morariu, V.I., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., Davis, L.S.: Automatic online tuning for fast gaussian summation. In: NIPS (2008)
Otsu, N.: A threshold selection method from gray-level histograms. Automatica (1975)
Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? European Journal of Neuroscience 17(5), 1089–1097 (2003)
Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR (2012)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Patt. Anal. and Mach. Intell. 33(2), 353–367 (2011)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. and Mach. Intell. 20(11), 1254–1259 (1998)
Shi, K., Wang, K., Lu, J., Lin, L.: Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. In: CVPR (2013)
Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: CVPR (2013)
Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mei, J., Lu, BL. (2014). Saliency Level Set Evolution. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8835. Springer, Cham. https://doi.org/10.1007/978-3-319-12640-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-12640-1_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12639-5
Online ISBN: 978-3-319-12640-1
eBook Packages: Computer ScienceComputer Science (R0)