Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Saliency Level Set Evolution

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8835))

Included in the following conference series:

  • 2467 Accesses

Abstract

In this paper, we consider saliency detection problems from a unique perspective. We provide an implicit representation for the saliency map using level set evolution (LSE), and then combine LSE approach with energy functional minimization (EFM). Instead of introducing sophisticated segmentation procedures, we propose a flexible and lightweight LSE-EFM framework for saliency detection. The experimental results demonstrate our method outperforms several existing popular approaches. We then evaluate several computation strategies independently. The comparisons results indicate their effectiveness and strong abilities in combatting saliency confusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR (2011)

    Google Scholar 

  2. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR (2007)

    Google Scholar 

  3. Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2009)

    Google Scholar 

  4. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency in images. In: CVPR (2009)

    Google Scholar 

  5. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer (2003)

    Google Scholar 

  6. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)

    Google Scholar 

  7. Hunt, R.W.G., Pointer, M.R.: Measuring colour. John Wiley & Sons (2011)

    Google Scholar 

  8. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A bayesian framework for saliency using natural statistics. Journal of Vision 8(7) (2008)

    Google Scholar 

  9. Chang, J., Fisher, J.: Efficient mcmc sampling with implicit shape representations. In: CVPR (2011)

    Google Scholar 

  10. Kim, J., Fisher III, J.W., Yezzi, A., Çetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  11. Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morariu, V.I., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., Davis, L.S.: Automatic online tuning for fast gaussian summation. In: NIPS (2008)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. Automatica (1975)

    Google Scholar 

  14. Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? European Journal of Neuroscience 17(5), 1089–1097 (2003)

    Article  Google Scholar 

  15. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR (2012)

    Google Scholar 

  16. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Patt. Anal. and Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  17. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. and Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  18. Shi, K., Wang, K., Lu, J., Lin, L.: Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. In: CVPR (2013)

    Google Scholar 

  19. Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: CVPR (2013)

    Google Scholar 

  20. Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mei, J., Lu, BL. (2014). Saliency Level Set Evolution. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8835. Springer, Cham. https://doi.org/10.1007/978-3-319-12640-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12640-1_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12639-5

  • Online ISBN: 978-3-319-12640-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics