Abstract
We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of \(k\) cones, for some fixed integer \(k > 1\), and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter \(k = 6k'\) have spanning ratio \(11.67\), for \(k' \ge 6\). In this paper we establish a first spanning ratio of \(7.82\) for Theta-Theta graphs, for the same values of \(k\). We also extend the class of Theta-Theta spanners with parameter \(6k'\), and establish a spanning ratio of \(16.76\) for \(k' \ge 5\). We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to \(4.64\) as \(k'\) increases to \(8\). These are the first results on the spanning properties of Theta-Theta graphs.
This work was supported by NSF grant CCF-1218814.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The triangular distance from a point \(a\) to a point \(b\) is the side length of the smallest equilateral triangle centered at \(a\) that touches \(b\) and has one horizontal side.
References
Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: STOC ’95: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 489–498. ACM, New York (1995)
Barba, L., Bose, P., Damian, M., Fagerberg, R., Keng, W.L., O’Rourke, J., van Renssen, A., Taslakian, P., Verdonschot, S., Xia, G.: New and improved spanning ratios for Yao graphs. In: Proceedings of the 30th Annual Symposium on Computational Geometry, SOCG’14, pp. 30–39. ACM, New York (2014)
Barba, L., Bose, P., De Carufel, J.-L., van Renssen, A., Verdonschot, S.: On the stretch factor of the Theta-4 graph. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 109–120. Springer, Heidelberg (2013)
Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between Theta-graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)
Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010)
Bose, P., Carmi, P., Chaitman, L., Collette, S., Katz, M.J., Langerman, S.: Stable roommates spanner. Comput. Geom. Theory Appl. 46(2), 120–130 (2013). (Special issue of selected papers from the 22nd Canadian Conference on Computational Geometry, CCCG’10)
Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight bounds on Theta-graphs. CoRR abs/1404.6233 (2014)
Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M.H.M., Wuhrer, S.: Pi/2-angle Yao graphs are spanners. CoRR, abs/1001.2913 (2010)
Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M.H.M., Wuhrer, S.: Pi/2-angle Yao graphs are spanners. Int. J. Comput. Geom. Appl. 22(1), 61–82 (2012)
Bose, P., Gudmundsson, J., Morin, P.: Ordered Theta graphs. Comput. Geom. Theory Appl. 28(1), 11–18 (2004)
Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The Theta-5 graph is a spanner. CoRR abs/1212.0570 (2014) (To appear in Computational Geometry: Theory and Applications)
Bose, P., van Renssen, A., Verdonschot, S.: On the spanning ratio of Theta-graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 182–194. Springer, Heidelberg (2013)
Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)
Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proceedings of the 19th Annual ACM Conference on Theory of Computing, STOC’87, pp. 56–65 (1987)
Cowen, L.J., Wagner, C.G.: Compact roundtrip routing in directed networks (extended abstract). In: Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, pp. 51–59. ACM, New York (2000)
Damian, M., Bauer, M.: An infinite class of sparse-Yao spanners. In: Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms, SODA’13, pp. 184–196, 6–8 January 2013
Damian, M., Molla, N., Pinciu, V.: Spanner properties of \(\pi /2\)-angle Yao graphs. In: Proceedings of the 25th European Workshop on Computational Geometry, pp. 21–24, March 2009
Damian, M., Raudonis, K.: Yao graphs span Theta graphs. Discret. Math. Algorithms Appl. 4(2), 181–194 (2012)
Damian, M., Voicu, D.M.: Spanning properties of theta-theta graphs. CoRR abs/1407.3507 (2014)
Hamdaoui, B., Ramanathan, P.: Energy efficient and MAC-aware routing for data aggregation in sensor networks. Sensor Network Operations, pp. 291–308 (2006)
Kanj, I.A., Perkovic, L., Xia, G.: Local construction of near-optimal power spanners for wireless ad hoc networks. IEEE Trans. Mob. Comput. 8(4), 460–474 (2009)
Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT’88. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)
Keng, W.L., Xia, G.: The Yao graph \(y_5\) is a spanner. CoRR abs/1307.5030 (2013)
Li, M., Wan, P.-J., Wang, Y.: Power efficient and sparse spanner for wireless ad hoc networks. In: Proceedings of the 10th International Conference on Computer Communications and Networks, pp. 564–567 (2001)
Molla, N.: Yao spanners for wireless ad hoc networks. Technical report, M.S. Thesis, Department of Computer Science, Villanova University, December 2009
Roditty, I., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Trans. Algorithms 4(3), 1–17 (2008)
Ruppert, J., Seidel, R.: Approximating the \(d\)-dimensional complete Euclidean graph. In: Proceedings of the 3rd Canadian Conference on Computational Geometry, CCCG’91, pp. 207–210 (1991)
Scheideler, C.: Overlay networks for wireless systems. New Topics in Theoretical Computer Science, pp. 213–251 (2008)
Song, W.-Z., Wang, Y., Li, X.-Y., Frieder, O.: Localized algorithms for energy efficient topology in wireless ad hoc networks. In: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc’04, pp. 98–108. ACM, New York (2004)
Wang, Y., Li, X.-Y., Frieder, O.: Distributed spanners with bounded degree for wireless ad hoc networks. Int. J. Found. Comput. Sci. 14(2), 183–200 (2003)
Yao, A.C.-C.: On constructing minimum spanning trees in \(k\)-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Damian, M., Voicu, D.V. (2014). Spanning Properties of Theta-Theta Graphs. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-12691-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12690-6
Online ISBN: 978-3-319-12691-3
eBook Packages: Computer ScienceComputer Science (R0)