Abstract
We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor’s speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a \((1+\epsilon )^{\alpha }\tilde{B}_{\alpha }\)-approximation algorithm, where \(\tilde{B}_{\alpha }\) is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio \(\tilde{B}_{\alpha }((1+\epsilon )(1+\frac{w_{\max }}{w_{\min }}))^{\alpha }\) improving the best known result by a factor of \((\frac{5}{2})^{\alpha -1}(\frac{w_{\max }}{w_{\min }})^{\alpha }\). Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions.
E. Bampis, D. Letsios and G. Lucarelli are partially supported by the project ALGONOW, co-financed by the European Union (European Social Fund - ESF) and Greek national funds, through the Operational Program “Education and Lifelong Learning”, under the program THALES and by the project Mathematical Programming and Non-linear Combinatorial Optimization under the program PGMO. D. Letsios is partially supported by the German Research Foundation, project AL-464/7-1. G. Lucarelli is supported by the project Moebus funded by ANR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)
Albers, S.: Algorithms for dynamic speed scaling. In: STACS. LIPIcs, vol. 9, pp. 1–11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)
Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)
Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA, pp. 289–298. ACM (2007)
Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling setting. CoRR, abs/1309.1732 (2013)
Angel, Eric, Bampis, Evripidis, Kacem, Fadi, Letsios, Dimitrios: Speed Scaling on Parallel Processors with Migration. In: Kaklamanis, Christos, Papatheodorou, Theodore, Spirakis, Paul G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)
Antoniadis, Antonios, Huang, Chien-Chung: Non-preemptive Speed Scaling. In: Fomin, Fedor V., Kaski, Petteri (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg (2012)
Bampis, Evripidis, Kononov, Alexander, Letsios, Dimitrios, Lucarelli, Giorgio, Nemparis, Ioannis: From Preemptive to Non-preemptive Speed-Scaling Scheduling. In: Du, Ding-Zhu, Zhang, Guochuan (eds.) COCOON 2013. LNCS, vol. 7936, pp. 134–146. Springer, Heidelberg (2013)
Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient scheduling and routing via randomized rounding. In: FSTTCS. LIPIcs, vol. 24, pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)
Bampis, Evripidis, Letsios, Dimitrios, Lucarelli, Giorgio: Green Scheduling, Flows and Matchings. In: Chao, Kun-Mao, Hsu, Tsan-sheng, Lee, Der-Tsai (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 106–115. Springer, Heidelberg (2012)
Bampis, Evripidis, Letsios, Dimitrios, Milis, Ioannis, Zois, Georgios: Speed Scaling for Maximum Lateness. In: Gudmundsson, Joachim, Mestre, Julián, Viglas, Taso (eds.) COCOON 2012. LNCS, vol. 7434, pp. 25–36. Springer, Heidelberg (2012)
Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with migration. In: ISPA, pp. 153–161. IEEE (2008)
Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp. 190–196. ACM (2006)
Chan, H.-L., Chan, W.-T., Lam, T. W., Lee, L.-K., Mak, K.-S., Wong, P. W. H.: Energy efficient online deadline scheduling. In: SODA, pp. 795–804 (2007)
Cohen-Addad, V., Li, Z., Mathieu, C., Milis, I.: Energy-efficient algorithms for non-preemptive speed-scaling. In: WAOA. LNCS. Springer (2014)
Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: SPAA, pp. 11–18. ACM (2009)
Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)
Huang, Chien-Chung, Ott, Sebastian: New Results for Non-Preemptive Speed Scaling. In: Csuhaj-Varjú, Erzsébet, Dietzfelbinger, Martin, Ésik, Zoltán (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 360–371. Springer, Heidelberg (2014)
Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM Journal on Computing 35, 658–671 (2006)
Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory of Computing Systems 43, 67–80 (2008)
Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor sharing systems. In: INFOCOM, pp. 2007–2015. IEEE (2009)
Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS, pp. 374–382. IEEE Computer Society (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bampis, E., Letsios, D., Lucarelli, G. (2014). Speed-Scaling with No Preemptions. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-13075-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13074-3
Online ISBN: 978-3-319-13075-0
eBook Packages: Computer ScienceComputer Science (R0)