Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Speed-Scaling with No Preemptions

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

Abstract

We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor’s speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a \((1+\epsilon )^{\alpha }\tilde{B}_{\alpha }\)-approximation algorithm, where \(\tilde{B}_{\alpha }\) is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio \(\tilde{B}_{\alpha }((1+\epsilon )(1+\frac{w_{\max }}{w_{\min }}))^{\alpha }\) improving the best known result by a factor of \((\frac{5}{2})^{\alpha -1}(\frac{w_{\max }}{w_{\min }})^{\alpha }\). Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions.

E. Bampis, D. Letsios and G. Lucarelli are partially supported by the project ALGONOW, co-financed by the European Union (European Social Fund - ESF) and Greek national funds, through the Operational Program “Education and Lifelong Learning”, under the program THALES and by the project Mathematical Programming and Non-linear Combinatorial Optimization under the program PGMO. D. Letsios is partially supported by the German Research Foundation, project AL-464/7-1. G. Lucarelli is supported by the project Moebus funded by ANR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96 (2010)

    Article  MathSciNet  Google Scholar 

  2. Albers, S.: Algorithms for dynamic speed scaling. In: STACS. LIPIcs, vol. 9, pp. 1–11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  3. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)

    Google Scholar 

  4. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA, pp. 289–298. ACM (2007)

    Google Scholar 

  5. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling setting. CoRR, abs/1309.1732 (2013)

    Google Scholar 

  6. Angel, Eric, Bampis, Evripidis, Kacem, Fadi, Letsios, Dimitrios: Speed Scaling on Parallel Processors with Migration. In: Kaklamanis, Christos, Papatheodorou, Theodore, Spirakis, Paul G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Antoniadis, Antonios, Huang, Chien-Chung: Non-preemptive Speed Scaling. In: Fomin, Fedor V., Kaski, Petteri (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Bampis, Evripidis, Kononov, Alexander, Letsios, Dimitrios, Lucarelli, Giorgio, Nemparis, Ioannis: From Preemptive to Non-preemptive Speed-Scaling Scheduling. In: Du, Ding-Zhu, Zhang, Guochuan (eds.) COCOON 2013. LNCS, vol. 7936, pp. 134–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient scheduling and routing via randomized rounding. In: FSTTCS. LIPIcs, vol. 24, pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  10. Bampis, Evripidis, Letsios, Dimitrios, Lucarelli, Giorgio: Green Scheduling, Flows and Matchings. In: Chao, Kun-Mao, Hsu, Tsan-sheng, Lee, Der-Tsai (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 106–115. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Bampis, Evripidis, Letsios, Dimitrios, Milis, Ioannis, Zois, Georgios: Speed Scaling for Maximum Lateness. In: Gudmundsson, Joachim, Mestre, Julián, Viglas, Taso (eds.) COCOON 2012. LNCS, vol. 7434, pp. 25–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with migration. In: ISPA, pp. 153–161. IEEE (2008)

    Google Scholar 

  13. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp. 190–196. ACM (2006)

    Google Scholar 

  14. Chan, H.-L., Chan, W.-T., Lam, T. W., Lee, L.-K., Mak, K.-S., Wong, P. W. H.: Energy efficient online deadline scheduling. In: SODA, pp. 795–804 (2007)

    Google Scholar 

  15. Cohen-Addad, V., Li, Z., Mathieu, C., Milis, I.: Energy-efficient algorithms for non-preemptive speed-scaling. In: WAOA. LNCS. Springer (2014)

    Google Scholar 

  16. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: SPAA, pp. 11–18. ACM (2009)

    Google Scholar 

  17. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  18. Huang, Chien-Chung, Ott, Sebastian: New Results for Non-Preemptive Speed Scaling. In: Csuhaj-Varjú, Erzsébet, Dietzfelbinger, Martin, Ésik, Zoltán (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 360–371. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM Journal on Computing 35, 658–671 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory of Computing Systems 43, 67–80 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor sharing systems. In: INFOCOM, pp. 2007–2015. IEEE (2009)

    Google Scholar 

  22. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS, pp. 374–382. IEEE Computer Society (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Lucarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bampis, E., Letsios, D., Lucarelli, G. (2014). Speed-Scaling with No Preemptions. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics